Optimized System for Your Bottom Line

Trane Training Class
1 Dec, 2017
Total Cost of Ownership
Setting your system for great payback

Where is money spent over a 30 year lifetime?

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Cost</td>
<td>4.9%</td>
</tr>
<tr>
<td>Service</td>
<td>6.6%</td>
</tr>
<tr>
<td>Power</td>
<td>88.5%</td>
</tr>
</tbody>
</table>

A Balanced Approach, with a Focus on Efficiency
### Chiller Plant Efficiency

**Note:** Based on electrically driven centrifugal chiller plants in comfort conditioning application with 5.6°C nominal chilled water supply temperature and open cooling towers sized for 29.4°C maximum entering condenser water temperature and 20% excess capacity.

<table>
<thead>
<tr>
<th>Category</th>
<th>COP</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Technology All-Variable Speed Chiller Plants</td>
<td>7.0</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>High-efficiency Optimized Chiller Plants</td>
<td>5.9</td>
<td>GOOD</td>
</tr>
<tr>
<td>Conventional Code Based Chiller Plants</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Older Chiller Plants</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Chiller Plants with Correctable Design or Operational Problems</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

**Average Annual Chiller Plant Efficiency in kW/ton (C.O.P.)**

*Input energy includes chillers, condenser pumps, tower fans and chilled water pumping.*

<table>
<thead>
<tr>
<th>kW/ton</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
</table>
Chiller Plant Efficiency

Optimal Plant Efficiency = Guaranteed chiller performance + System application & control strategy
Chiller Plant Efficiency

- Major Equipment for water-cooled chiller plant
  - Chiller
  - Pump
  - Cooling Tower
Chiller Performance

History of Chiller Efficiency

ASHRAE Standard 90.1

Chiller efficiency, COP


Centrifugal >600 tons
Screw 150-300 tons
Scroll <100 tons
Reciprocating <150 tons

“best” available
### Chiller Performance

**BEEO Requirement (2015)**

#### Table 6.12b: Minimum Coefficient of Performance for Chiller at Full Load

<table>
<thead>
<tr>
<th>Type of compressor</th>
<th>Reciprocating</th>
<th>Scroll</th>
<th>Screw</th>
<th>VSD Screw</th>
<th>Centrifugal</th>
<th>VSD Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Air-cooled</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Range (kW)</td>
<td>Below 400 kW</td>
<td>Below 400 kW &amp; above</td>
<td>Below 500 kW &amp; above</td>
<td>Below 500 kW</td>
<td>500 kW &amp; above</td>
<td>All Ratings</td>
</tr>
<tr>
<td>Minimum COP at cooling (free air flow$^{(a)}$)</td>
<td>2.8</td>
<td>2.9</td>
<td>2.8</td>
<td>2.9</td>
<td>2.8 (3.6)$^{(a)}$</td>
<td>2.9 (3.7)$^{(a)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9 (3.7)$^{(a)}$</td>
<td>3.1 (4.0)$^{(a)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of compressor</th>
<th>Reciprocating / Scroll</th>
<th>Screw</th>
<th>VSD Screw</th>
<th>Centrifugal</th>
<th>1000 kW to 3000 kW</th>
<th>Above 3000 kW</th>
<th>1000 kW to 3000 kW</th>
<th>Above 3000 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Water-cooled</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Range (kW)</td>
<td>Below 500 kW</td>
<td>500 to 1000 kW</td>
<td>Above 1000 kW</td>
<td>Below 500 kW</td>
<td>500 to 1000 kW</td>
<td>Above 1000 kW</td>
<td>Below 1000 kW</td>
<td>1000 kW to 3000 kW</td>
</tr>
<tr>
<td>Minimum COP (Cooling)</td>
<td>4.2</td>
<td>4.7</td>
<td>5.3</td>
<td>4.8</td>
<td>5.0</td>
<td>5.5</td>
<td>4.7 (6.1)$^{(a)}$</td>
<td>4.9 (6.3)$^{(a)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.2 (6.7)$^{(a)}$</td>
<td>5.6$^{(a)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comprehensive review to be conducted in 2018, 2021 and 2024 respectively.
### Chiller Performance

#### Centrifugal Chiller

<table>
<thead>
<tr>
<th>Type of Refrigerant</th>
<th>R-123</th>
<th>R-134a</th>
<th>R-134a</th>
<th>R-134a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Refrigerant Efficiency</td>
<td>0.433 kW/ton (8.1 COP)</td>
<td>0.460 kW/ton (7.6 COP)</td>
<td>0.460 kW/ton (7.6 COP)</td>
<td>0.460 kW/ton (7.6 COP)</td>
</tr>
<tr>
<td>Centrifugal Chiller Cycle Efficiency</td>
<td>0.388 kW/ton (9.1 COP)</td>
<td>0.415 kW/ton (8.5 COP)</td>
<td>0.415 kW/ton (8.5 COP)</td>
<td>0.415 kW/ton (8.5 COP)</td>
</tr>
<tr>
<td>Drive Train Efficiency</td>
<td>100%</td>
<td>98.1%</td>
<td>97.9%</td>
<td>100%</td>
</tr>
<tr>
<td>Compressor Efficiency</td>
<td>83.3%</td>
<td>80.4%</td>
<td>81.8%</td>
<td>78.8%</td>
</tr>
<tr>
<td>Motor Efficiency</td>
<td>95.5%</td>
<td>95.0%</td>
<td>95.0%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Chiller Efficiency</td>
<td>0.487 kW/ton (7.2 COP)</td>
<td>0.554 kW/ton (6.3 COP)</td>
<td>0.545 kW/ton (6.4 COP)</td>
<td>0.543 kW/ton (6.5 COP)</td>
</tr>
</tbody>
</table>
AHRI Definition of Integrated Part Load Value (IPLV/NPLV)

\[
\text{IPLV} = \frac{1\%}{A} + \frac{42\%}{B} + \frac{45\%}{C} + \frac{12\%}{D}
\]

Temperatures: Expected Entering Tower Water
AHRI Conditions: Chilled Water: 54°/44°F (12.2°/6.6°C)
Condenser Water: 3 GPM/Ton (0.054 L/S/kW)

- **A** = kW/Ton @ 29.4°C (85°F) @ 100% Load
- **B** = kW/Ton @ 23.9°C (75°F) @ 75% Load
- **C** = kW/Ton @ 18.3°C (65°F) @ 50% Load
- **D** = kW/Ton @ 18.3°C (65°F) @ 25% Load

Real World Chillers Operate at Real World Conditions
Chiller Performance
Efficiency Comparison – Index Rating vs. Real-World

Hong Kong (Two Chiller Plant)
Custom Analysis versus Generic NPLV Estimates

Where Do The Chillers in Your Plant Run?
Always, Always Remember … The Meter is On The BUILDING
Compliant calculation methodologies

Chiller Plant Efficiency

Pump Performance

• Hydraulic Power $P_{h(kW)} = q \rho \ g \ h / (3.6 \times 10^6)$
  - $q$ = flow capacity (m$^3$/h)
  - $\rho$ = density of fluid (kg/m$^3$)
  - $g$ = gravity (9.81 m/s$^2$)
  - $h$ = pump head (m)

• Pump Head is the total resistance that a pump must overcome
  - Static Head
  - Friction Head
  - Pressure Head
  - Velocity Head
Pump Performance

Pump Head Calculation

- Never oversize pump
- Select pump duty point for best efficiency
Pump Performance
Reduce Friction Loss
BEC 2015 Chapter 6 Energy Efficiency Requirements for Air-conditioning Installation

6.9 Frictional Loss of Water Piping System

6.9.1 Water piping with diameter 50 mm or below should be sized for water flow velocity not exceeding 1.2 m/s.

6.9.2 Water piping with diameter larger than 50 mm should be sized for frictional loss not exceeding 400 Pa/m and –
   (a) water flow velocity not exceeding 2.5 m/s for system that operates under non-variable flow condition; or
   (b) water flow velocity not exceeding 3.0 m/s for system that operates under variable flow condition.

- Pressure drop per unit length
  - 2.5m/s @ 200mm pipe
  - 240 Pa/m with 89.7kg/s

CIBSE Guide C4
Flow of Fluids in Pipes and Ducts
Pump Performance

Pump Head Calculation

- Friction Losses in Elbow (equiv. length)
  - 18 Feet (90° Elbow)
- Pressure drop
  \[
  \frac{18}{3.3} \times 240 \text{ Pa/m} = 1.309 \text{kPa}
  \]
- Pump Power Consumption
  \[
  1.309 \times 89.7 / 0.7 / 0.93 / 1,000 = 0.18 \text{ kW}
  \]
- Annual Operation Cost
  \[
  0.18 \times 12 \times 365 \times 1.2 = \text{HKD946}
  \]
Pump Performance
Pump Head Calculation

- Friction Losses in Elbow (equiv. length)
  - 10 Feet (45° Elbow)
  - 18 Feet (90° Elbow)
- Pressure drop difference
  \[
  \frac{(18 - 10)}{3.3} \times 240 \text{ Pa/m} \times 2 \\
  = 1,164 \text{ Pa} = 1.164 \text{ kPa}
  \]
- Pump Power Consumption
  \[
  1.164 \times 89.7 \div 0.7 \div 0.93 \div 1,000 \\
  = 0.16 \text{ kW}
  \]
- Annual Operation Cost
  \[
  0.16 \times 12 \times 365 \times 1.2 \\
  = \text{HKD841}
  \]
Pump Performance
Reduce Friction Loss

Optimal chiller plant layout and careful selection of low pressure drop devices reduces pressure losses
Pump Performance
Simplify Piping Layout

- Friction Loss in 100% open balancing valve
  - Nominal Size: 200mm
  - Flow Rate: 89.7 l/s
  - Pressure drop = 17.8 kPa

- Pump Power Consumption
  \[ 17.8 \times 89.7 / 0.7 / 0.93 / 1,000 \]
  \[ = 2.45 \text{ kW} \]

- Annual Operation Cost
  \[ 2.45 \times 12 \times 365 \times 1.2 \]
  \[ = \text{HKD12,877} \]
Pump Performance
Simplify Piping Layout

Water-cooled chiller

Condensing water pump

Chilled water pump

Cooling tower

Water tank
Pump Performance
Simplify Piping Layout

Apply low friction loss fitting
• Reduce overall pressure drop

Equal pipe length for self-balancing
• Eliminate balancing equipment
Pump Performance
Reduce Friction Loss

• Increase the pipe diameter of the system
• Minimize the length of the piping in the system
• Simplifying the layout as much as possible
• Minimize the number of elbows, tees, valves, fittings and other obstructions in the piping system
• Reduce the flow rate
Cool More or Pump More?

- Pump efficiency ≈ 70%
  COP ≈ 0.7
- Chiller COP ≈ 7.0
- Chiller COP ≈ 10x the pump COP

Conclusion: work your most efficient equipment harder
System Enhancement
Earthwise Application

- Low Flow
- Low Temperature
- High Efficiency Systems
System Enhancement
Earthwise Application

Supply temperature

Flow rates

Temperature differential

Fans
Ductwork
Pump
Piping
System Enhancement

Why Consider Variable Primary Flow (VPF) Now?

- Chiller control sophistication
- Operating cost savings
  - Pump energy
  - Response to low ΔT Syndrome
Variable Primary Flow (VPF)

**Advantages**

- Reduces capital investment
- Saves mechanical-room space
- Simplifies control
- Improves system reliability
- Improved chiller performance
Variable Primary Flow (VPF)

Improve chiller performance
Variable Primary Flow (VPF)
Improve chiller performance

CenTraVac Part Load Performance CTV-1
% Load vs. kW/ton -- using Constant Condenser Method

Variable Primary Flow (VPF)
Improve chiller performance
Variable Primary Flow (VPF)

Three Key Application Requirements

- Chillers must be able to accommodate a change of flow of at least 10% per minute; 30% or even 50% is even better
- Minimum and maximum flows must not be violated
- A bypass is required to maintain minimum flow
Chiller-Tower Optimization (CTO)
Optimal condenser water control

![Graph showing energy consumption vs. condenser water temperature]

- **Total** line
- **Chiller** line
- **Tower** line

Optimal control point
Chiller-Tower Optimization (CTO)

Dependent On?

• Chilled water plant
  - Tower design
  - Chiller design
    ▪ Centrifugal
    ▪ Helical rotary
    ▪ Variable speed drive
    ▪ Absorption
  - Changing conditions
    ▪ Chiller load
    ▪ Ambient wet bulb
System Enhancement

• EarthWise Application
  - Low flow, low temperature and large ΔT system
• Variable Primary Flow
• Chiller-tower Optimization
Energy Approach

Walk Through  
Customer Needs  
System Design  
Energy Analysis  
Turn Key Project

PERFORMANCE MANAGEMENT
Energy Approach
Baseline Energy Consumption
Energy Approach

Strategies for chiller upgrades & optimization

• Correctly Size the New Equipment
• Proper Chiller plant design
  - System Schematic
  - Layout
• Implement of Chiller Plant Control
Energy Approach
Correctly Size the New Equipment

- Determine actual building load
  - From BMS/operation log
  - Estimated from electric bill

Electricity Fee

Annual Electricity Fee – HKD 8,711,063 @ 2008

Electricity Fee for Chiller Plant = HKD 5,662,191 (65% of overall)
Energy Approach
Correctly Size the New Equipment

- Determine actual building load
  - From BMS/operation log
  - Estimated from electric bill
- Downsize Chiller if possible
  - Match with cooling load profile
  - Reduce initial cost and payback period
- Replace with higher efficiency chiller
  - Improve overall savings
Energy Approach

Correctly Size the New Equipment

- Energy Analysis
  - Employ TRACE 700 Chiller Plant Analyzer for plant configuration comparisons
  - Input existing energy profile for analysis
  - Calculate the energy and economic effects on different configuration
Energy Approach
Correctly Size the New Equipment
Energy Approach
Correctly Size the New Equipment

- Alternative 1
  - 2 no 600 TR water-cooled centrifugal chiller
  - 1 no 600 TR water-cooled centrifugal chiller c/w AFD

- Alternative 2
  - 2 no 750 TR water-cooled centrifugal chiller
  - 1 no 300 TR water-cooled screw chiller

Total 1,800TR cooling capacity will be provided
Energy Approach
Correctly Size the New Equipment

Alternative 1

Annual Saving: HKD 2,287,377 (40%)

Alternative 2

Annual Saving: HKD 2,084,079 (36.6%)
Energy Approach
Chiller Plant Design (Schematic)

- Review of Existing System Arrangement
- Consideration of System Change-over / Migration
- Select chilled / condensing water distribution system
- Decide equipment design condition
  (e.g. Chilled Water Temp, Cooling Tower Approach)
- Properly size pipe sizes
- Associated system design
  (e.g. Make-up / bleed off system, chemical treatment system)
Energy Approach
Chiller Plant Design (Schematic)
Energy Approach
Chiller Plant Design (Layout)

- Satisfy statutory requirement
- Sufficient space for maintenance and service
- Minimize water pressure drop
Energy Approach
Chiller Plant Design (Layout)
Energy Approach
Chiller Plant Control

Comprehensive control system with Cooling Tower Optimization
Energy Approach
Chiller Plant Control

- Fully Automation
- Trend log for major equipment
- Alarm Management
Energy Approach

Summary

• System analysis for plant configuration design
• Select high efficiency for better energy saving
• Consider pressure drop and future maintenance during pipework and layout design
• Reliable Chiller Plant Control System
• Monitor the system performance after installation