

Economic Perspectives from Chiller Design to Operation

66 174

Ir K.T. Cheuk 1 Dec 2017

Low Life Cycle Cost

Legendary Reliability

2

Design x Construction

Building Operation

Design x Construction

Acoustic Treatment Electrical Installation High Efficiency Pump Head Energy

Acoustic Treatment Electrical Installation High Efficiency Pump Head Energy

Tradition Noise Reduction

Coming.....

Installation and Operation Sound options

- InvisiSound[™] Standard
 - compressor muffler
 - low noise fans

- <u>InvisiSound™ Superior</u>
 - suction and discharge wraps
 - lower speed fans
- InvisiSound[™] Ultimate
 - compressor bellows
 - patented compressor enclosure
 - noise setback option

Acoustic reduction treatments provide freedom to choose the unit sound level that meets the job requirements

TRANE®

Acoustic Treatment Electrical Installation High Efficiency Pump Head Energy

Electrical Installation (ACB / MCCB & Cables) :-

400A (50m Cables) : HK\$100K

630A (50m Cables) : HK\$130K (Diff. 30K)

800A (50m Cables) : HK\$200K (Diff. 70K)

1000A (50m Cables) : HK\$250K (Diff. 50K)

Acoustic Treatment Electrical Installation High Efficiency Pump Head Energy

Table 6.12b : Minimum Coefficient of Performance for Chiller ^{@2} at Full Load															
<u>Air-cooled</u>															
Type of compressor	Reciprocating Scroll		oll	Screw			VSD Screw		Centrifugal		\	VSD Centrifugal			
Capacity Range (kW)	Below 400 kW	400 & ab	CONTRACTOR AND	Below 00 kW	400 kW above	& Belo 500		kW & bove	Below 500 kW	500 kW & above	All	Ratings		All Ratir	ngs
Minimum COP at cooling (free air flow ^{@1})	2.8	2.	9	2.8	2.9	2.9	9	3.0	2.8 (3.6) ^{@5}	2.9 (3.7) ^{@5}		3.2		3.1 (4.0) ⁶	ø5
	Water-cooled														
Type of Reciprocating / Screw					VSD Screw Centrifugal VSD			SD Centrifugal							
Capacity Range (kW)	Below 500 kW	500 to 1000 kW	Above 1000 kW	Below 500 kW	500 to 1000 kW	Above 1000 kW	Below 500 kW	500 to 1000 kW		Below 1000 kW	1000 kW to 3000 kW	Above 3000 kW	Below 1000 kW	1000 kW to 3000 kW	Above 3000 kW
Minimum COP (Cooling)	4.2	4.7	5.3	4.8	5.0	5.5	4.7 (6.1) ^{@5}	4.9 (6.3) [©]	5.2 ⁹⁵ (6.7) [@]	5.4 ^{@3} 5.6 ^{@4}	5.7	5.8	5.1 (6.6) ^{@5}	5.5 (7.1) ^{@5}	5.6 (7.2) ^{@5}

Air-Cooled Screw Chiller (VSD & Constant Speed) :-

2.8 to 3.0 (BEC) vs (Installed) 3.55 18% to 26% up

Water Cooled Centrifugal Chiller (VSD & Constant Speed) :-

5.5 to 5.7 (BEC) vs (Installed) 6.4 12% to 16% up

Technology Comparison

Evaluation of Design Choice Advantages

Reliability through Simplicity of Design!

Design Choices Impact Efficiency

Centrifugal Chiller Comparison

Refrigerant	R-134a 0.460 kW/ton		R-513A 0.469 kW/ton -2%		R-123 0.433 kW/ton	R-1233zd 0.436 kW/ton +6%	R-514A 0.434 kW/ton +7%	
Chiller Cycle		Sub-C 0.415			Refrigerant Economizer 0.388 kW/ton +7%			
Compressor	Gear Dr	Hermetic	Direct Single Stage	t Drive Mult Stage	-=++	Direct Drive Mult Stage	4- =-‡	
Motor Drive Train Impeller	95.0% 97.9% 82.8%	95.0% 98.1% 81.4%	97.0% 100% 78.8%	97.0% 100% 75.1%	95.0% 100% 83.3%		97.0% 100% 84.1%	
Production @ 300 tons @ 700 tons @ 1,500 tons	Maglev (Multi S Maglev (Single S Gear Drive (Sing	tage) Stage)	0.540 kW/ton 0.540 kW/ton	PLV 0.318 kW/ton 0.330 kW/ton 0.340 kW/ton	CVHS (300) CVHF (700) CVHH (1500)	0.478 kW/ton 0.484 kW/ton	IPLV D.296 kW/ton D.317 kW/ton D.312 kW/ton	

Unit Design Choices Drive Real Efficiency Paybacks

Application Reference

Job Showcase

2012

Project: Hysan Place

Type: Commercial / Hysan Development Co Ltd

Size: 808,958 sq ft

Award: LEED Platinum, BEAM Plus Platinum

Model	Qty.	Capacity (RTon)	COP_{adj}^{1}	vs BEC 2015 ²		
CVHF1070-142L-142L	5	950	6.39	Better 14.11%		

1) Based on AHRI 550/590 conditions

2) Min. requirement of BEC for VSD centrifugal chiller is 5.6 @>3000kW, 5.5>1000kW AND <3000kW

Platinum

白金級『門門

MPlus

Application Reference

Job Showcase

2013

Project: HKU Centennial Campus

Type: Higher Education / University Of Hong Kong

Size: 793,124 sq ft

Award: LEED Platinum, BEAM Plus Platinum

Model	Qty.	Capacity (RTon)	COP_{adj}^1	vs BEC 2015 ²
CVHF770-142L-142L	4	900	6.25	Better 8.32%
CVHE450-080S-080L	2	360	6.34	Better 11.82%

1) Based on AHRI 550/590 conditions

2) Min. requirement of BEC for VSD centrifugal chiller is 5.6 @>3000kW, 5.5>1000kW AND <3000kW

CONFIDENTIAL AND PROPRIATARY INFORMATION OF TRANE

Application Reference

Job Showcase

2016

Project: HKUST Campus

Type: Higher Education / The Hong Kong University of Science and Technology

Size: 107,640 sq ft

Award: 2016 Energy Project of the Year Award (APR)

Model	Qty.	Capacity (RTon)	COP_{adj}^1	vs BEC 2015 ²	
CVHF1100-142L-142L	3	1,200	6.63	Better 14.31%	

1) Based on AHRI 550/590 conditions

2) Min. requirement of BEC for CSD centrifugal chiller is 5.8 @>3000kW

Case Study

District Cooling System (DCS)

Item	Specificatio ns	Trane CenTraVac™	Savings / Benefits
Origin	-	USA	-
Capacity (tons)	2500	2500	-
Refrigerant	R134a	HFO-1233zd	-
Power Supply	11kV/3/50	11kV/3/50	-
Power Input (kW)	1490	1339.6	Less 150.4 kW
Full load COP (kW/kW)	5.9	6.56	11.19% better
Full load efficiency (kW/ton)	0.596	0.536	11.19% better
Evaporator water Pressure Drop (kPa)	65 (max)	21.7	Less 43.3kPa
Condenser water Pressure Drop (kPa)	70 (max)	20.3	Less 49.7kPa

A Balanced Approach, with a Focus on Efficiency

Building Operation

Refrigeration Cycle 冷媒循環

CONDENSER EVAPORATOR COMPRESSOR CONTROL REFRIGERANT

Refrigeration Cycle製冷循環

Reliability Features Adaptive ControlsTM

- "Smart" controller that adds reliability and helps to avoid nuisance trips
- Chiller will take corrective action based on its operating conditions

High Condensing Pressure → Lower efficiency

Installation and Operation

Closest spacing in the industry

- Decorative walls
- Close spacing
- Pit applications

36

Efficiency drivers

- Condenser fan motor
 - Electronically Commutated (EC) fans
 - Integral VSD
 - Permanent magnet motor
 - 2% efficiency improvement at full load
 - 5% efficiency improvement at part load

Typical Condenser Fan Motor

Tips :-

- **1.** Keep the Condenser in good condition
- 2. Proper water treatment
- 3. Check the approach temperature (water vs condensing temp.)

CONDENSER EVAPORATOR COMPRESSOR CONTROL REFRIGERANT

Traditional Shell and Tube

Evaporator Flow

Falling Film Evaporator

- Less Refrigerant
- Better Heat Transfer
- Oil Concentrator

How do we achieve these efficiency levels?

New CHIL evaporator design Compact, High-performance, Integrated, Low-charge Premium efficiency heat transfer tubes Up to 40% less refrigerant

RTAC Falling Film Evaporator

Tips :-

- 1. Keep the Evaporator in good condition
- 2. Proper Water Treatment
- 3. Check the approach temperature (water vs condensing temp.)

CONDENSER EVAPORATOR COMPRESSOR CONTROL REFRIGERANT

Efficiency drivers

- New compressor design
 - Delivers peak efficiency under all operating conditions
 - Optimized for variable speed operation
 - Up to a 10% improvement in compressor efficiency
 - Permanent magnet motors

Rotational Slip

Induction motor "slips" in order to establish a magnetic field in the rotor to produce torque. The power in the rotor is lost as heat. As more torque is required, more slip occurs.

Permanent Magnet Motor

No Rotational Slip

Permanent magnet motor has its rotor magnetic field permanently provided by the magnets. No external power is necessary as in the induction motor.

Permanent Magnet motor eliminates losses due to slip... Resulting in 2-4 % higher efficiency.

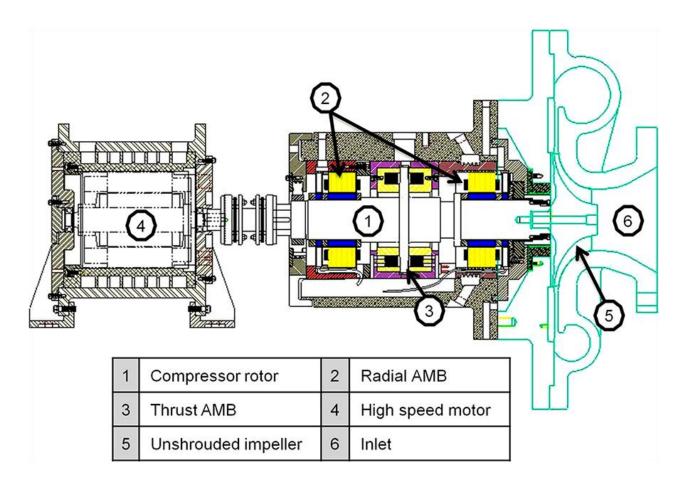
Efficiency drivers

Permanent Magnet Motors

AHRI Definition of Integrated Part Load Value (IPLV/NPLV)

Full load vibration test (Nickel Test)

- Trane performs a vibration test on the assembled centrifugal chiller at the time of the 100 percent load test.
- The levels of vibration generated by the operating unit are so low, a nickel can balance on the edge of the main compressor-motor assembly



Multi-stage Advantages

Two or Three Stage

% Surge resistant**%** Higher Efficiency

- Less Frictional Losses
- One or two stage economizer cycle

Tips :-

- 1. Avoid running in Surge Zone (Especially in Night Mode)
- 2. Carry out vibration analysis
- 3. Carry out oil analysis **before** deciding change of oil
- 4. Check Shaft Seal Leakage for Open Type

CONDENSER EVAPORATOR COMPRESSOR CONTROL REFRIGERANT

Reliability Features UC800 Controller with TD7 Interface

Adaptivew™ Controls

- Industry leading algorithms to optimize control during rapidly changing conditions
- Feedforward adaptive control
- Rapid Restart capability

<u>TD7 Adaptiview™ Interface</u>

- Color touchscreen display
- UV resistant
- IP56 compliant
- Historical diagnostics
- Standard and custom reports
- Stand alone control

Efficiency drivers

- AFD₃ Adaptive Frequency[™] Drive
 - Trane third-generation Adaptive Frequency[™] drive
 - Part load efficiency improvement of more than 40%
 - Designed to work with new compressor design

Reliability Features

R-410A Screw Compressor, AFD3 Adaptive Frequency[™] Drive

AFD3 designed to last

the life of the chiller!

- Trane designed and manufactured
- Accelerated life testing
 - High pressure ratio tests
 - High/low tests
 - Flooded starts/stops tests
 - Start/stop tests

- Trane designed and manufactured
 - Robust fully integrated software
 - Chiller safeties and protections
 - Fluid cooled drive
 - Uses polymer film capacitors
 - Serviceable components

Screw

Unit Efficiency

Full and IPLV Efficiency

@ AHRI Standard Conditions

Tips :-

- 1. Keep up to date Firmware
- 2. Use Genuine Parts
- 3. Analyze Operation History Data

CONDENSER EVAPORATOR COMPRESSOR CONTROL REFRIGERANT Efficiency Global Ozone Depletion Warming

Refrigerant can behave like stopped traffic

f traffic is stopped, then allowed to move suddenly, the cars will take off quickly and the trucks will take some time to rumble up to speed. Refrigerant acts quite similarly.

Temperature

Glide

This is like the molecules in refrigerant A jumping quickly into the bubbles, while the molecules in refrigerant B stay in the liquid. The average speed is low, just as the boiling point is lower at this point.

If you stand about one mile down the road, you will see a bunch of cars go by with a truck or two, then you will see a bunch of trucks with a car or two. This is like the liquid and

vapor being at different compositions. The average speed is higher, as the boiling point is getting higher.

Go 10 miles down the road and the trucks have caught up to the cars. Similarly, the refrigerant A and B molecules come together as vapor. The speed is higher still, like the boiling point.◆

Refrigerant Number 🧲

ASHRAE Standard 34

- 000 Series Methane Based, e.g. R-11, -12, -22
- 100 Series Ethane Based, e.g. R-123, -125, -134a,
- 200 Series Propane Based
- 300 Series Cyclic Organic Compounds
- 400 Series Zeotrope, e.g. R-404A, -410A, -452A, -452B
- 500 Series Azeotrope, e.g. R-513A, -514A, -515A
- 600 Series Organic Compounds, e.g. R-600
- 700 Series Inorganic Compounds, e.g. R-717, -744
- 1000 Series Unsaturated Organic Compounds, e.g. R-1234yf, -1234ze(E), -1233zd(E), -1336mzz(Z), -1130(E)

Refrigerant Table

10/01/2017

Refrigerant	ODP	GWP	Refrigerant Class	Atmospheric Life	Composition	Phase Out Schedule
Low Pressure Refrigerant						
R123	0.02	79	B1	475 days	HCFC Homogeneous	Yes
R1233zd	Zero (0.0002)	1	A1	26 days	HFO Homogeneous	No
R514a (Opteon XP30)	Zero (0.00006)	1.75	B1	22 days	HFO Blend	No
Medium Pressure Refrigerant						
R134a	Zero (0.000015)	1300	A1	4,900 days	HFC Homogeneous	Yes
R513a (Opteon XP10)	Zero	573	A1	2,158 days	HFO Blend	No
High Pressure Refrigerant						
R410a	Zero	2100	A1	6,200 days	HFC Blend	Yes
R22	0.055	1810	A1	4,344 days	HCFC Homogeneous	Yes

Efficiency impacted by Refrigerant Choice... Centrifugal & Screw Chillers in particular

Tips :-1. MUST weight Refrigerant before dumping back

