

Installation, Operation and Maintenance AdaptiR[™] Helical Rotary Liquid Chillers

Models: RTHD

175-450 ton units (60 Hz) with AFD option 150-425 ton units (50 Hz) with AFD option

573163230200

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

April. 2022

Warnings, Cautions and Notices

Warnings, Cautions and Notices Note that warnings, cautions and notices appear at appropriate intervals throughout this manual. Warnings are provide to alert installing contractors to potential hazards that could result in death or personal injury. Cautions are designed to alert personnel to hazardous situations that could result in personal injury, while notices indicate a situation that could result in equipment or property-damage-only accidents.

Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

Read this manual thoroughly before operating or servicing this unit.

ATTENTION: Warnings, Cautions and Notices appear at appropriate sections throughout this literature. Read these carefully:

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

▲ CAUTION Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

NOTICE: Indicates a situation that could result in equipment or property-damage only

Important Environmental Concerns!

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs such as HCFCs and HFCs.

Responsible Refrigerant Practices!

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

▲ WARNING

Proper Field Wiring and Grounding Required!

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow code could result in death or serious injury.

Warnings, Cautions and Notices

WARNING Personal Protective Equipment (PPE) Required! Installing/servicing this unit could result in exposure to electrical, mechanical and chemical hazards. Before installing/servicing this unit, technicians MUST put on all Personal Protective Equipment (PPE) recommended for the work being undertaken. ALWAYS refer to appropriate MSDS sheets and OSHA guidelines for proper PPE. When working with or around hazardous chemicals, ALWAYS refer to the appropriate MSDS sheets and OSHA guidelines for information on allowable personal exposure levels, proper respiratory protection and handling recommendations. If there is a risk of arc or flash, technicians MUST put on all Personal Protective Equipment (PPE) in accordance with NFPA 70E or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. Failure to follow recommendations could result in death or serious injury. **△ WARNING Contains Refrigerant!**

System contains oil and refrigerant under high pressure. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or refrigerant additives.

Failure to follow proper procedures or the use of non-approved refrigerants, refrigerant substitutes, or refrigerant additives could result in death or serious injury or equipment damage.

Warnings, Cauti	ons and Notices	2
General Informa	tion	11
Unit Identifica	tion - Nameplates	11
Figure 1.	Typical Unit Nameplate	11
Unit Namep	lates	11
Unit Inspectio	n	12
Inspection (Checklist	12
Loose Parts	Inventory	12
Unit Description	on	12
Model Num	ber Coding System	12
Unit Model Nu Table 1.	umber Model Number	13 13
Unit Model Nu	umber (located on compressor nameplate)	17
Table 2.	Compressor Model Number	17
Figure 2.	Component Location for AdaptiR [™] with AFD option Unit	
Figure 3.	Component Location for AdaptiR [™] with AFD option Unit (Back View	v) 18
Figure 4.	Component Location for AdaptiR [™] with AFD/Variable Volume Ratio) Unit 19 Dunit
(Back Viev		19
Installation Ov	/erview	20
Table 3.	Installation Responsibility Chart for AdaptiR [™] with AFD option Unit	ts 20
Table 4.	General Data	22
Table 5.	General Data	23
Table 6.	General Data	24
Table 7.	General Data	25
Installation Mec	hanical	26
Storage		26
Location Requ	iirements	26
Noise Consi	iderations	26
Foundation		26
Vibration El	iminators	26
Clearances.		26
Figure 6.	Recommended Operating and Service Clearances (without filter)	27
Figure 7.	Recommended Operating and Service Clearances (with filter)	
Ventilation.		29
Water Drain	age	29
Access Rest	rictions	29
Moving and	l Rigging	29
Figure 8.	Unit Weights and Dimensions for Rigging (without filter)	30
Figure 9.	Unit Weights and Dimensions for Rigging (with filter)	
lable 8.	Unit vveight(Unit with big panel,Ib(kg))	

Table 9.	Unit Weight(Unit with small panel,Ib(kg))	32
Table 10.	Unit Weight with filter(Big frame panel, Ib(kg))	33
Table 11.	Unit Weight with filter(Small frame panel, lb(kg))	34
Table 12.	Center of Gravity(in(mm))	35
Table 13.	Center of Gravity with Filter(in(mm))	36
Lifting Proce	edure	37
Figure 10.	Recommended Lifting Method	37
Table 14.	Rigging	38 20
Altornata M	aving Method	39 40
Isolation Pa	de	40 40
Placement	loopropo loolator Installation (optional)	40 40
Fidure 12	Isolator Pad Placement	40 41
Figure 13.	Oil Separator with Shipping Bracket and Compressor Shipping Spacer.	41
Unit Levelin	q	42
Water Piping	5	42
Piping Conn	ections	42
Reversing W	/ater Boxes	42
Dimensions		43
Table 15.	Evaporator and Condenser Data	45
Water Pressure	e Drop Data	46
Making Gro	oved Pipe Connections	50
Vents and D	rains	50
Evaporator I	Piping Components	50
Entering Ch	illed Water Piping	50
Leaving Chi	lled Water Piping	50
Condenser F	Piping Components	51
Leaving con	denser water piping	51
Condenser \	Nater Regulating Valve	51
Condenser \	Nater Regulating Valve Adjustment	52
Water Treatme	ent	52
Water Press	ure Gauges and Thermometers	52
Figure 14.	Typical Thermometer, Valving, and Manifold Pressure Gauge Set-up	53
Water Press	ure Relief Valves	53
Flow Sensin	g Devices	53
Refrigerant	Pressure Relief Valve Venting	54
Figure 15.	Relief Valve Location	54
Table 16.	Pressure Relief Valve Data	55
Thermal Insula	ation	56
Figure 16.	Typical AdaptiR [™] with AFD option Insulation Requirements	56
Table 17.	Recommended Insulation Types	56

aterbox Removal and Installation	57
Introduction	57
Discussion	57
Procedure	57
Figure 17. Water Box Rigging and Lifting – Vertical Lift Only	58
Reassembly	58
Table 18. AdaptiR™ with AFD option Torque	58
Parts Ordering Information	59
Table 19. Connection Devices	
Figure 18. Eyebolt connection (Safety hoist ring M12X1.75)	59
	60
Fliter Panel Lifting	bl
Figure 20 Single Filter Lifting	
Figure 21. Double Filter Lifting	
Filter Shinment	
Filter Installation on Site	6′
Mechanical Assembly	
Figure 22. Filter Assembly Process	
Electrical Wiring Connection	63
Single Filter Power Connection (Standard AFD chiller)	63
Table 20. Recommended wiring torgue	
Figure 23. Cables routing	63
Figure 24. Power Cable Routing With Single Filter Panel	64
Two Filters Power Connection (Standard AFD chiller)	64
Figure 25. Power Cable Routing With Double Filter Panel	64
Two Filters Power Connection (VVI chiller)	65
Figure 26. Power Cable Routing With Double Filter Panel	65
Filter Control Harness Connection (Standard AFD chiller)	66
Table 21. Control wiring from control panel to filter panel (single filter)	66
Figure 27. Control cable routing with single filter	66
Table 22. Control wiring from control panel to filter panel (Double filters)	6
Figure 28. Control cable routing with double filters	67
Filter Panel Construction	68
Figure 29. Filter Panel for 110KW~220KW Drive	68
Filter Panel Maintenance	68
Figure 30. Filter Panel for 250KW~315KW Drive	68
stallation Electrical	69
General Recommendations	70
Power Supply Wiring	70
Water Pump Power Supply	70
Electrical Papel Power Supply	70

Table 23. Wire Selection Chart for Starter Panels	71
Figure 31. Electrical Installation	71
Module Connections for Interconnecting Wiring	72
Interconnecting Wiring (Field Wiring Required)	73
Chilled Water Pump Control	73
Chilled Water Flow Interlock	73
Condenser Water Pump Control	73
Condenser Water Flow Interlock	74
Chilled Water Reset (CWR)	74
Equations for calculating CWR	74
Table 24. Chiller Events/Status Descriptions	
Table 25. Programable Relays	76
Emergency Stop	76
External Auto/Stop	76
Soft Loading	76
External Base Loading - Optional	
Base Loading Control setpoint	77
Summit Interface - Optional	77
Operating Principles Mechanical	78
General	78
Refrigeration (Cooling) Cycle	78
Cycle Description	78
Figure 32. Pressure /Enthalpy Curve	79
Figure 33. RTHD Refrigerant Flow Diagram	80
Figure 34. RTHD Variable Volume Ratio Refrigerant Flow Diagram	
Compressor Description	
Compressor Meter	
Frequency Change	82
Oil Management System	83
Cil Separator	83
Figure 37. RTHD Variable Volume Ratio Oil Flow Diagram	
Oil Flow Protection	85
	86
Compressor Rearing Oil Supply	
Compressor Bearing On Supply	00 عو
	00 00
	00

Operator Interfac	e Controls	88
Symbio800 Ov	erview	88
Figure 38.	Front View of Symbio800	88
Figure 39.	wiring locations and connection ports	89
Tracer TU		89
Figure 40.	Tracer TU	90
Controls Interf	ace	90
TD7 Display		90
Tracer TU		90
Tracer Adapti\	/iew™TD7	90
Operator Int	erface	90
Figure 41.	TD7	91
Main Displa	v Area/Home Screen	91
Figure 42.	, Main Screen	91
Table 26.	Main Screen Items	91
Viewina Chi	ller Operating Modes	
Figure 43.	Chiller Operating Modes screen	92
Table 27.	Operating Modes	92
Alarms	·	94
Viewing the	Alarms Screen	94
Figure 44.	Alarm Screen	94
Reports		94
Viewing the	Reports Screen	95
Figure 45.	Report Screen	95
Editing a Cu	stom Report	95
Figure 46.	Edit Custom Report screen	96
Figure 47.	Report Evaporator Screen	96
Table 28.	Report Evaporator Screen Items	96
Figure 48.	Report Condenser Screen	97
Table 29.	Report Condenser Screen Items	97
Figure 49.	Report Compressor Screen	97
Table 30.	Report Compressor Screen Items	97
Figure 50.	Report Motor Screen	98
Table 31.	Report Motor Screen Items	98
Equipment S	Settings	98
Viewing the	Settings Screen	98
Figure 51.	Setting Screen	99
Viewing and	I Changing Equipment Settings	99
Figure 52.	Example equipment settings screen (Chiller Settings shown)	99
Figure 53.	Chilled Water Setpoint Screen	100
Figure 54.	Changed Chilled Water Setpoint Screen	100
Table 32.	Settings Screen Items	100
Display Sett	ings	101

Viewing the	Settings Screen	
Viewing and	d Changing Display Preferences	
Figure 55.	Display ReferenceScreen	
Figure 56.	Data Format Page	102
Figure 57.	Language Page	103
Figure 58.	Date and Time screen	103
Cleaning the	e Display	104
Figure 59.	Countdown screen	104
Security Set	ttings	
Disabling/Er	nabling Security	104
Figure 60.	Security screen	105
Figure 61.	Security screen	105
Logging In.		105
Figure 62.	Log In Screen	106
Logging Ou	t	106
Figure 63.	Log out confirmation screen	106
Tracer TU		
Figure 64.	TracerTU interface	107
Unit Start-up		
Power Up		108
Figure 65.	Sequence of operation: power up diagram	108
Figure 66.	TD-7 screen displays	108
Power Up to S	Starting	109
Figure 67.	Power Up to Starting	109
Stopped to Sta	arting	109
Figure 68.	Stopped to Starting	110
Limit Conditio	ns	110
Table 33.	Limit Conditions	110
Seasonal Unit	Start-Up Procedure	111
Unit Shutdown.		115
Normal Shutd	own to Stopped	115
Figure 69.	Normal Shutdown	115
Seasonal Unit	Shutdown	115
Periodic Mainter	nance	116
Overview		116
Weekly Mainte	enance and Checks	116
, Monthly Main	tenance and Checks	116
Table 34.	Operating Conditions at Full Load	
Table 35.	Operating Conditions at Minimum Load	117
Annual Mainte	enance	117
Schedulina Ot	her Maintenance	117
Operating Log		
	,	

Maintenance Procedures12	0
Cleaning the Condenser12	0
Mechanical Cleaning Procedure12	0
Chemical Cleaning Procedure12	0
Cleaning the Evaporator12	0
Compressor Oil	1
Oil Sump Level Check	1 22
Removing Compressor Oil12	2
Oil Charging Procedure12	3
Replacing the Main Oil Filter (Hot Filter)12	3
Replacing the Gas Pump/Thermosyphon Oil Filter	4
Refrigerant Charge12	4
Evacuation and Dehydration12	4
Refrigerant Charging12	5
Diagnostics	6
Table 37. Diagnostics Table	26
Wiring Schematics13	5
Unit Electrical Data13	5

Unit Identification - Nameplates

When the unit arrives, compare all nameplate data with ordering, submittal, and shipping information. A typical unit nameplate is shown in Figure 1.

• TRANE	PRODUCT NAME Relical Retary Liquid Oni	Ilera	
MODEL NUMBER	DEVICE MODEL		
SERIAL NUMBER		M.	DITIONAL FUNCTION
RATHED COOLING CAPACITY(W)	RATED COOLING UNIT POWER(W)	RATED COOLING COPYLINER)	IPLV(WINV)
SELECTED COOLING SELECTED (CAPACITY(UR) UNT POW	COOLING SELECTED ER(VM) COOLING COP(VMMM)	SELECTED HEATING SELECT CAPACITY(W) UNIT P	ED HEATING SELECTED DIVERSING MEATING COP(WAVAN)
RATED VOLT UTLEZ	ATEN MINGROUT	188(4) 34	UAA (A) IMAX PUSE OR CIRCUIT BREAKER(A)
CHARGE	WTH kg	CHW/GE	WITH L
COMPRESSOR	2.(HZ) PH- RLA(4)	нан	DESIGN PRESSURE: APVI
VOLT-AC(V) K	2 (42) PI+ VA(W)	SHIPPING WEICHT (Hg)	MARUFACTURING DATE
NSTALLATION, OPERATION AND MINIMUM CEMANUM.	UNIT DIMENSION LIK BIX H (WH)	_	SCHEMATIC DIAGRAMS
EVERYCRUPED LIBER OF EXTRAG	Car the national data water for	CHUR CHUR CTUR CUUR S DRUP DRUP CHUR CHUR S COUR CHUR CHUR CHUR S	OUN USER UND NER SET
TRAVE AIR CONDITIONING \$15	TEMS (CHINA) CO., LTD	NACE IN CHINA.	

Figure 1. Typical Unit Nameplate

Unit Nameplates

The AdaptiR[™] with AFD option "unit" nameplate is applied to the exterior surface of the starter/ control panel. The "compressor" nameplate is applied to the compressor. The starter/control panel nameplate is located inside the panel.

The unit nameplate provides the following information:

- Unit model
- Unit Serial Number
- Unit device number.
 - » Identifies unit electrical requirements
 - » Lists correct operating charges of HFC-134a and refrigerant oil
 - » Lists unit test pressures and maximum working pressures.

The starter/control panel nameplate provides the following information:

- Panel model number
- Rated load amps
- Voltage
- · Electrical characteristics starter type, wiring
- Options included.

The compressor nameplate provides the following information:

- Compressor model descriptor
- Compressor serial number
- Compressor device number
- Motor serial number

- Compressor electrical characteristics
- Refrigerant.

Unit Inspection

When the unit is delivered, verify that it is the correct unit and that it is properly equipped. Inspect all exterior components for visible damage. Report any apparent damage or material shortage to the carrier and make a "unit damage" notation on the carrier's delivery receipt. Specify the extent and type of damage found and notify the appropriate Trane Sales Office.

Do not proceed with installation of a damaged unit without sales office approval.

Inspection Checklist

To protect against loss due to damage incurred in transit, complete the following checklist upon receipt of the unit.

- Inspect the individual pieces of the shipment before accepting the unit. Check for obvious damage to the unit or packing material.
- Inspect the unit for concealed damage as soon as possible after delivery and before it is stored. Concealed damage must be reported within 10 days after receipt.
- If concealed damage is discovered, stop unpacking the shipment. Do not remove damaged material from the receiving location. Take photos of the damage, if possible. The owner must provide reasonable evidence that the damage did not occur after delivery.
- Notify the Trane sales representative and arrange for repair. Do not repair the unit, however, until damage is inspected by the transportation representative.

Loose Parts Inventory

Check all items against the shipping list. Water vessel drain plugs, isolation pads, rigging and electrical diagrams, service literature and the starter/control panel wire pullbox (required on some starters) are shipped unassembled in the starter control panel.

Unit Description

The AdaptiR[™] with AFD option units are single compressor, helical-rotary type, variable frequency, water-cooled liquid chillers designed for installation indoors. Each unit is a completely assembled, hermetic package that is factory-piped, wired, leak-tested, dehydrated, charged (optional), and tested for proper control operation before shipment.

Figure 2 and Figure 3 show a typical AdaptiR[™] with AFD option unit and its components. Figure 4 and Figure 5 show a typical variable volume ratio unit of AdaptiRTM and its components. Water inlet and outlet openings are covered before shipment. The oil tank is factory charged with the proper amount of refrigeration oil. The unit can be factory charged with refrigerant.

Model Number Coding System

The model numbers for the unit and the compressor are composed of numbers and letters that represent features of the equipment. Shown in the three tables following are samples of typical unit, compressor, and panel model numbers, followed by the coding system for each.

Unit Model Number

Table 1.	Model Number			
Name	Code	M/N Digit	M/N Code	Description
MODL		1-4		Basic product line
	RTHD		RTHD	Water-Cooled Series R - Dev Sequence D
DCTL		5		Manufacturing Plant
	TAI		Т	Taicang plant, China
	BKK		В	Bangkok plant, Thailand
COMP		6-7		Compressor
	B1		B1	B1 compressor
	B2		B2	B2 compressor
	C1		C1	C1 compressor
	C2		C2	C2 compressor
	D1		D1	D1 compressor
	D2		D2	D2 compressor
	D3		D3	D3 compressor (50 Hz only)
	E3		E3	E3 compressor
	D4		D4	D4 compressor
VOLT		8		Unit power supply
	200A		А	200V/60Hz/3Ph power
	230A		С	230V/60Hz/3Ph power
	380A		D	380V/60Hz/3Ph power
	380B		R	380V/50Hz/3Ph power
	400B		Т	400V/50Hz/3Ph power
	415B		U	415V/50Hz/3Ph power
	460A		F	460V/60Hz/3Ph power
	575A		Н	575V/60Hz/3Ph power
SPEC		9		Design Specials
	NONE		Х	None
	ELSE		С	Specials denoted elsewhere
	NOT		S	Specials not denoted elsewhere
DSEQ		10-11		Design sequence
	EO		E0	Factory/ABU assigned, start with A0 (AFD design)
AGLT		12		Agency listing
	NONE		Х	No agency listing
	CUL		U	C/UL listing
	CCC		3	CCC- Chinese Compulsory Code
CODE		13		Pressure vessel code
	ASME		Α	ASME pressure vessel code
	CAN		С	Canadian code
	SQLO		L	Chinese code
	SPL		S	Special

Table 1. Model Number

Name	Code	M/N Digit	M/N Code	Description
EVAP		14-15		Evaporator
	B1		B1	B1 evaporator
	B2		B2	B2 evaporator
	C1		C1	C1 evaporator
	C2		C2	C2 evaporator
	D1		D1	D1 evaporator
	D2		D2	D2 evaporator
	D3		D3	D3 evaporator
	D4		D4	D4 evaporator
	D5		D5	D5 evaporator
	D6		D6	D5 evaporator
	E1		E1	E1 evaporator
	F1		F1	F1 evaporator
	F2		F2	F2 evaporator
	G1		G1	G1 evaporator
	G2		G2	G2 evaporator
	G3		G3	G3 evaporator
	H1		H1	H1 evaporator
	H2		H2	H2 evaporator
	H3		H3	H3 evaporator
EVTM		16		Evap Tube type
	A			Standard
	В			High efficiency
EVWP		17		Evaporator passes
	2		2	2 Pass evaporator
	3		3	3 Pass evaporator
	4		4	4 Pass evaporator
EVWC		18		Evaporator water connection
	LH		L	Left hand evaporator connection
	RH		R	Right hand evaporator connection
EVCT		19		Evaporator connection type
	STD		В	Standard grooved pipe
	MAR		С	Marine
	FLMA		D	Standard flange connection and companion flange
	SPEC		S	Special
EVPR		20		Evaporator water side pressure
	LOW		L	150 PSI / 10.5 Bar evaporator water pressure
	HIGH		Н	300 PSI / 21 Bar evaporator water pressure
COND		21-22		Condenser
	B1		B1	B1 condenser
	B2		B2	B2 condenser
	D1		D1	D1 condenser
	D2		D2	D2 condenser
	E1		E1	E1 condenser
	E2		E2	E2 condenser
	E3		E3	E3 condenser
	E4		E4	E4 condenser
	E5		E5	E5 condenser
	<u>F1</u>		F1	F1 condenser
	F2		F2	F2 condenser
	F3		F3	F3 condenser
	<u>G1</u>		Gl	G1 condenser
	62		G2	G2 condenser
	<u> </u>		63	G3 condenser
	64		64	G4 condenser
	65		65	G5 condenser
	G6		G6	G6 condenser

Table 1.	Model Number			
Name	Code	M/N Digit	M/N Code	Description
CDTM		23	-	Condenser tube type
	CUFN		Α	Enhanced fin - copper
	SMBR		В	Smooth bore - copper
	SBCN		С	Smooth bore - 90/10 Cu/Ni
CDWP		24		Condenser passes
	2		2	2 Pass
CDWC		25		Condenser water connection
	LH		L	Left hand condenser connection
	RH		R	Right hand condenser connection
CDCT		26		Condenser connection type
	STD		В	Standard grooved pipe
	MAR		С	Marine
	FLMA		D	Standard flange connection and companion flange
	SPEC		S	Special
CDPR		27		Condenser water side pressure
	150		L	150 PSI / 10.5 Bar condenser water pressure
	300		Н	300 PSI / 21 Bar condenser water pressure
CDLW		28		Condenser Leaving Water Temp
	STD		Α	Standard (<45 deg C)
VLVS		29		Refrigerant specialties
	NONE		Х	No refrigerant isolation valves
	VLV		V	Refrigerant isolation valves
OILC		30		Oil Cooler
	NONE		Х	without oil cooler
	OIL		С	with oil cooler
INSL		31		Thermal Insulation
	NONE		Х	No insulation
	INSL		Q	Factory insulation cold parts
	INSLS		S	Double insulation
SNDA		32		Sound Attenuator
	NONE		Х	No insulation
	WRAP		В	Sound wrap
LANG		33		Control, Label, and Literature Language
	ENG		E	English
	CHN		С	Chinese
SFTY		34		Safety Devices
	STD		Х	Standard
CHRG		35		Shipping Charge
	FACT		А	Full Factory Charge
	N2		В	Nitrogen
	FACP		С	Refrigerant charged less than 12kg(R134a)
PCKG		36		Shipping Package
	NONE		Х	No shipping requirment
	SKID		Z	Shipment package+Unit bottom frame
FLOW		37		Flow Switch
	NONE		Х	Without
	EVNM		Α	Evap NEMA-1
	ECNM		В	Evap & Cond NEMA-1
	EVVP		С	Evap Vapor
	ECVP		D	Evap & Cond Vapor
TEST		38		Factory Performance Test
	NONE		Х	Without
	WIT		С	Witness test
	REP		D	Performance test w/report
	SPEC		S	Special

Table 1. Model Number

Name	Code	M/N Digit	M/N Code	Description
SRTY		39	-	Starter Type
	YDEL		Y	Wye-delta closed transition starter
	SSST		Α	Solid State starter
	AFD1		В	Variable frequency starter AFD1
	AFD2		С	Variable frequency starter AFD2 with filter
	AFD3		D	Standard variable frequency starter AFD3
	AFD4			Standard variable frequency starter AFD4 with filter
	7.101	40-42	-	Starter Type
TREA	VRLA	10 12	***	Slection RI A
PCON		43		Bower line connection type
FCON	TERM		Δ	Terminal block connection for incoming line(s)
			 B	Mech disconnect switch
	CB		D	Circuit breaker
	CBHI		F	High interrupt circuit breaker
	GFCB		н	Ground fault circuit breaker
	GFHI]	Ground fault high interrupt circuit breaker
ENC		44	-	Enclosure type
	NEMA		A	NEMA 1
WVUO		45		Under/over voltage protection
	NIST		Х	No under/over voltage protection
	INST		U	Under/over voltage protection
OPIN		46		Unit operator interface
	DVA		А	Dyna-View operator interface-Pueblo
	DVD		D	Dyna-View/Spanish
	DVG		G	Dyna-View/Trad.Chinese
	DVH		Н	Dyna-View/Simp.Chinese
	DVJ		J	Dyna-View/Japanese
	DVK		К	Dyna-View/Portugese(Brazil)
	DVL		L	Dyna-View/Korean
	DVM		М	Dyna-View/Thai
	TD7		Т	TD7
СОММ		47		Remote Interfaces (digital comm)
	NIST		X	No remote digital comm
			4	Tracer Comm 4 Interface
			5	Iracer Comm 5 LCI-C (Lon Ialk)
			7	Modbus communication interface
SETD	MODD	48	/	External Chilled Water & Current Limit Setnoint
JEIT	NIST		X	None
	INST		4	4-20 ma input
	INSA		2	2-10 Vdc input
BSLD		49		External Base Loading
	NIST		Х	None
	INST		4	4-20 ma input
	INSA		2	2-10 Vdc input
ICEB		50		Icemaking
	NIST		Х	None
	INST		А	Icemaking with relay
	INSA		В	Icemaking without relay
STAT		51		Programmable Relays
	NIST		Х	None
	INST		R	Programmable Relay
OATS		52		Chilled water reset -outdoor air temp
	NIST		Х	No Sensor (return water CHW reset standard)
	INST		Т	Chilled water reset - outdoor air temp
RPOT		53		Reg. Valve & RLA
	NIST		Х	None
	WREG		V	Condenser reg. Valve out & % RLA out
	HPC		Р	Condenser Pressure (%HPC) & % RLA out
	DELP		D	Chiller Delta P & %RLA out

Code	M/N Digit	M/N Code	Description
	54		Refrigerant Monitor Input
NIST		Х	None
INST		Α	100 ppm / 4-20 ma
INSA		В	1000 ppm / 4-20 ma
INSB		С	100 ppm / 2-10 Vdc
INSC		D	1000 ppm / 2-10 Vdc
	55		Hot water control
NIST		Х	None
INST		Н	With hot water control
	56		Installation Accessories
NONE		Х	None
NISO		А	Elastomeric Isolators
	Code NIST INST INSA INSB INSC NIST INST NIST INST NIST INST NIST NONE NISO	Code M/N Digit 54 NIST INST INSA INSB INSC 55 NIST INST INSC 55 NIST INST S6 NONE NISO	Code M/N Digit M/N Code 54 54 NIST X INST A INSA B INSB C INSC D 55 S5 NIST H S6 X NONE X NISO A

Table 1. Model Number

Unit Model Number (located on compressor nameplate)

Table 2. Compressor Model Number

Selection Category	M/N Digit	M/N Code	Description of Selection
Compressor Series	1-4	CHHC	Semi-Hermetic Heli-Rotor Compressor
Design Control	5	1	Pueblo
Compressor Frame	6	В	B Frame
		С	C Frame
		D	D Frame
		E	E Frame
Compressor Capacity	7	1	Smaller capacity (minor)
		2	Larger capacity (major)
		3	Special 50 Hz capacity
		4	Variable volume ratio
Motor	8	А	200V/60Hz/3
		С	230V/60Hz/3
		D	380V/60Hz/3
		F	460V/60Hz/3 or 400V/50Hz/3
		Н	575V/60Hz/3
Specials	9	0	No Specials
		С	Specials Denoted Elsewhere
		S	Uncategorized Special not denoted elsewhere
Design Sequence	10-11	AO	1st Design (Factory Input)

Figure 3. Component Location for AdaptiR[™] with AFD option Unit (Back View)

Figure 4. Component Location for AdaptiR[™] with AFD/Variable Volume Ratio Unit

Figure 5. Component Location for AdaptiR[™] with AFD/Variable Volume Ratio Unit (Back View)

Installation Overview

For convenience, Table 3 summarizes responsibilities that are typically associated with the AdaptiR[™] with AFD option chiller installation process.

Table 3. Installation Responsibility Chart for AdaptiR[™] with AFD option Units

Requirement	Trane-supplied, Trane-installed	Trane-supplied, Field-installed	Field-supplied, Field-installed
Rigging			 Safety chains Clevis connectors - Lifting beam
Isolation Electrical	 Circuit breakers Unit-mounted AFD 	 Isolation pads Circuit breaker Temperature sensor (optional outdoor air) Flow switches (may be fieldsuplied) Condenser water regulating valve controller (optional: may be fielsupplied) 	 Isolation pads Circuit breakers or fusible disconnects (optional) Terminal lugs Ground connection(s) Jumper bars BAS wiring (optional) IPC wiring Control voltage wiring High condenser pressure interlock wiring Chilled water pump contactor and wiring Condenser water pump contactor tactor and wiring Optional relays and wiring
Water piping	Daliafunkun	 Flow switches (may be fieldsupplied) Condenser water regulating valve controller (optional: may be field-supplied) 	 Thermometers Water flow pressure gauges Isolation and balancing valves water piping Vents and drain valves Pressure relief valves (for water boxes as required)
Insulation	Keller Valves Insulation (optional) Elastomeric Isolators (option)		 vent line and flexible connector Insulation Elastomeric Isolators (option)

Refer to the Installation Mechanical and Installation Electrical sections of this manual for detailed installation instructions.

- Locate and maintain the loose parts, e.g. isolators, temperature sensors, flow sensors or other factory-ordered, field-installed options, for installation, as required. Loose parts are located in the starter/control panel.
- Install the unit on a foundation with flat support surfaces, level within 1/4" (6.35 mm) and of sufficient strength to support concentrated loading. Place the manufacturer-supplied isolation pad assemblies under the unit.
- Install the unit per the instructions outlined in the Mechanical Installation section.
- Complete all water piping and electrical connections.
- **Note:** Field piping must be arranged and supported to avoid stress on the equipment. It is strongly recommended that the piping contractor provide at least 3 feet (914 mm) of clearance between the pre-installation piping and the planned location of the unit. This will allow for proper fit-up upon arrival of the unit at the installation site. All necessary piping adjustments can be made at that time. Refer to the current engineering bulletin for further details on installation.
- Where specified, supply and install valves in the water piping upstream and downstream of the evaporator and condenser water boxes, to isolate the shells for maintenance and to balance/trim the system.

- Supply and install condenser water control valve(s) per Trane Engineering Bulletin -Water Cooled Series R® Condenser Water Contol.
- Supply and install flow switches or equivalent devices in both the chilled water and condenser water piping. Interlock each switch with the proper pump starter and Symbio800, to ensure that the unit can only operate when water flow is established.
- Supply and install taps for thermometers and pressure gauges in the water piping, adjacent to the inlet and outlet connections of both the evaporator and the condenser.
- Supply and install drain valves on each water box.
- Supply and install vent cocks on each water box.
- Where specified, supply and install strainers ahead of all pumps and automatic modulating valves.
- Supply and install refrigerant pressure relief piping from the pressure relief to the atmosphere.
- If necessary, supply enough HCFC-134 refrigerant and dry nitrogen (75 psig) for pressure testing.
- Start the unit under supervision of a qualified service technician.
- Where specified, supply and insulate the evaporator and any other portion of the unit, as required, to prevent sweating under normal operating conditions.
- For unit-mounted starters, cutouts are provided at the top of the panel for line-side wiring.
- Supply and install the wire terminal lugs to the starter.
- Supply and install field wiring to the line-side lugs of the starter.

Table 4. General Data

	Unit Designator (corresponds to digits 6, 7, 14, 15, 21, 22 of unit model number)							
	D1D1E1	D1F1F2	D1G1G1	D2D2E2	D2F2F3	D2G2G1	E3G3G3	E3H3G3
General								
Refrigerant Type	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a
Refrigerant Charge	473	623	700	473	623	700	700	838
_(lb (kg))	(215)	(283)	(318)	(215)	(283)	(318)	(318)	(380)
Oil Charge	9.5	11(42)	13.5	9.5	11	13.5	13.5	13.5
	(30)	1700	(51)	(36)	(42)	(51)	(51)	(51)
(with Filter (lb(kg))	(7127)	(8022)	(9014)	(7198)	(8126)	20048	21144 (9591)	20867 (9485)
Operating Weight	14543	16516	18703	14700	16746	18880	19975	19701
(without Filter, (lb(kg))	(6597)	(7492)	(8484)	(6668)	(7596)	(8564)	(9061)	(8955)
Shipping Weight	14770	16358	18077	14859	16512	18187	19025	19019
(with Filter, (lb(kg))	(6700)	(7420)	(8200)	(6740)	(7490)	(8250)	(8630)	(8645)
Shipping Weight	13602	15189	16909	13690	15344	17019	17857	17853
(without Filter, (lb(kg))	(6170)	(6890)	(7670)	(6210)	(6960)	(7720)	(8100)	(8115)
Overall Dimensions								
Length	139	156	158	139	156	158	158	163
(with Filter, in(mm))	(3534)	(3958)	(4012)	(3534)	(3958)	(4012)	(4012)	(4133)
Length (without Filter in(mm))	139 (3534)	156 (3958)	158	139 (3534)	156 (3958)	158	158	163
Width	100	100	102	100	100	102	102	102
(with Filter, in(mm))	(2551)	(2551)	(2594)	(2551)	(2551)	(2594)	(2594)	(2594)
Width	72	72	75	72	72	75	75	76
(without Filter, in(mm))	(1840)	(1840)	(1895)	(1840)	(1840)	(1895)	(1895)	(1922)
Height	90	90	94	90	90	94	94	95
(with Filter, in(mm))	(2294)	(2296)	(2392)	(2294)	(2296)	(2392)	(2392)	(2418)
Height	90	90	94	90	90	94	94	95
(without Filter, in(mm))	(2294)	(2296)	(2392)	(2294)	(2296)	(2392)	(2392)	(2418)
Evaporator	<u> </u>	100	120	74	107	144	144	171
(gal (I))	(261)	(386)	(515)	(280)	(405)	(545)	(545)	(646)
Minimum Flow	415 (26)	563 (36)	505 (35)	450 (28)	604 (38)	550 (35)	550 (35)	596(38)
(qpm (l/s))	for 2-pass	2-pass	3 pass	for 2-pass	for 2-pass	3-pass	3-pass	3-pass
Water	275 (17)	376 (24)	379 (24)	300 (20)	404 (25)	411 (26)	411 (26)	466(29)
	for 3-pass	3-pass	4 pass	for 3-pass	for 3-pass	4-pass	4-pass	4-pass
Minimum Flow	498 (31)	676 (43)	606 (38)	541 (34)	725 (46)	660 (42)	660 (42)	720(45)
(gpm (l/s))Brine	for 2-pass	2-pass	3 pass	for 2-pass	for 2-pass	3-pass	3-pass	3-pass
	330 (21)	454 (29)	454 (29)	357 (23)	487 (31)	492 (31)	492 (31)	540(34)
Maximum Flaur	101 3-µass	2479 (1EC)	4 µass	100 3-µass	101 3-µass	4-µass	4-pass	4-µass
(apm (l/s))	for 2-nass	2476 (156) for 2-pass	2210 (139) 3 pass	1960 (125) for 2-nass	for 2-nass	2413 (152) for 3-pass	2413 (152) for 3-nass	2100(130) for 3-pass
(9pm (4,5))	1206 (76)	1655 (104)	1666 (104)	1320 (83)	1780 (112)	1807 (114)	1807 (114)	1640(103)
	for 3-pass	for 3-pass	4 pass	for 3-pass	for 3-pass	for 4-pass	for 4-pass	for 4-pass
Condenser (all are 2-	pass)							
Water Storage	44	57	79	47	61	79	79	79
(gal (l))	(166)	(216)	(299)	(178)	(231)	(299)	(299)	(299)
Minimum Flow	291	355	444	316	385	444	444	444
(gpm (l/s))Water	(18)	(22)	(28)	(20)	(24)	(28)	(28)	(28)
Minimum Flow	350	430	530	380	460	530	530	530
Max Flow	1280	1560	1960	1390	1700	1960	1960	1960
(apm (l/s))	(81)	(98)	(124)	(88)	(107)	(124)	(124)	(124)
	(0-)	(50)	()	(00)	(207)	()	()	()

All weights $\pm 3\%$, include standard 150 psig water boxes. Operating weights include refrigerant, oil, and water charges, the value of the unit height in the table is for 460V/60HZ, 50HZ and 380V/60HZ unit should reduce 200mm.

If oil cooler is installed, add 1/4 gal (1 liter) to the oil charge value given for B family units; add 1.0 gal (4 liters) for all other units. Overall dimensions are based on 3-pass evap/2 configurations pass cond and LH/RH water connections. Refer to TOPSS for exact job configurations.

Table 5. General Data

	Unit Designator (corresponds to digits 6, 7, 14, 15, 21, 22 of unit model number)						
	D3D2E2	D3F2F3	D3G2G1	D3G3G3	E3D2E2	E3F2F3	E3G2G1
General							
Refrigerant Type	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a
Refrigerant Charge	473	623	700	700	473	623	700
(lb (kg))	(215)	(283)	(318)	(318)	(215)	(283)	(318)
Oil Charge	9.5	11	13.5	11	9.5	11	13.5
(gal(l))	(36)	(42)	(51)	(42)	(36)	(42)	(51)
Operating Weight	15868	17914	20048	20879	15608	18223	20313
(With Filter, (ID(kg))	(7198)	(8126)	(9094)	(9471)	(7080)	(8266)	(9214)
(without Filter (lb(kg))	14700	10/40 (7596)	18880	(8941)	14440	17054 (7736)	(8684)
Shipping Weight	14859	16512	18187	18761	14598	16821	18452
(with Filter, (lb(kg))	(6740)	(7490)	(8250)	(8510)	(6622)	(7630)	(8370)
Shinning Weight	13690	15344	17019	17592	13430	15652	17283
(without Filter, (lb(kg))	(6210)	(6960)	(7720)	(7980)	(6092)	(7100)	(7840)
Overall Dimensions	, <i>i</i>	, <i>,</i>					
Length	139	156	158	158	139	156	158
(with Filter, in(mm))	(3534)	(3958)	(4012)	(4012)	(3534)	(3958)	(4012)
Length	139	156	158	158	139	156	158
(without Filter, in(mm))	(3534)	(3958)	(4012)	(4012)	(3534)	(3958)	(4012)
Width	100	100	102	102	100	100	102
(with Filter, in(mm))	(2551)	(2551)	(2594)	(2594)	(2551)	(2551)	(2594)
Width	72	72	75	75	72	72	75
(Without Filter, In(mm))	(1840)	(1840)	(1895)	(1895)	(1840)	(1840)	(1895)
Height (with Filter in(mm))	90 (2294)	90 (2296)	94 (2392)	94 (2392)	90	90	94 (2392)
Height	<u>(22)4)</u> 90	90	(2352) 94	(2352) 94	<u>(22)4)</u> 90	(2230) 	<u>(2352)</u> 94
(without Filter, in(mm))	(2294)	(2296)	(2392)	(2392)	(2294)	(2296)	(2392)
Evaporator							
Water Storage	74	107	144	159	74	107	144
(gal (I))	(280)	(405)	(545)	(602)	(280)	(405)	(545)
Minimum Flow	405 (28) for	604 (38)	550 (35)	622 (39)	450 (28)	604 (38)	550 (35)
(gpm (l/s))	2-pass	2-pass	3-pass	3-pass	2-pass	2-pass	3-pass
Water	300 (19) for	404 (25)	411 (26)	466 (29)	300 (19)	404 (25)	411 (26)
	3-pass	3-pass	4-pass	4-pass	3-pass	3-pass	4-pass
Minimum Flow	541 (34) for	725 (46)	660 (42)	747 (47)	541 (34)	725 (46)	660 (42)
(gpm (I/s))Brine	2-pass	2-pass	3-pass	3-pass	2-pass	2-pass	3-pass
	357 (23) for 3-pass	487 (31) 3-pass	492 (31) 4-pass	557 (35) 4-nass	357 (23) 3-pass	487 (31) 3-pass	492 (31) 4-pass
Maximum Flow	1980 (125)	2667 (168)	2413 (152)	2732 (172)	1980 (125)	2667 (168)	2413 (152)
(apm (l/s))	for 2-pass	for 2-pass	for 3-pass	for 3-pass	2-pass	for 2-pass	for 3-pass
(3)	1320 (83)	1780 (112)	1807 (114)	2050 (129)	1320 (83)	1780 (112)	1807 (114)
	for 3-pass	for 3-pass	for 4-pass	for 4-pass	for 3-pass	for 3-pass	for 4-pass
Condenser (all are 2-	pass)	·		-	-		
Water Storage	47	61	79	97	47	61	79
(gal (l))	(178)	(231)	(299)	(367)	(178)	(231)	(299)
Minimum Flow	316	355	444	589	316	355	444
(gpm (l/s))Water	(20)	(22)	(28)	(37)	(20)	(22)	(28)
Minimum Flow	380	460	530	710	380	460	530
(gpm (I/s))Brine	(24)	(29)	(33)	(45)	(24)	(29)	(33)
Max Flow	1390	1/00	1960	2600	1390	1/00	1960
	(00)	(107)	(124)	(104)	(00)	(107)	(124)

All weights $\pm 3\%$, include standard 150 psig water boxes.

Operating weights include refrigerant, oil, and water charges, the value of the unit height in the table is for 460V/60HZ, 50HZ and 380V/60HZ unit should reduce 200mm.

If oil cooler is installed, add 1/4 gal (1 liter) to the oil charge value given for B family units; add 1.0 gal (4 liters) for all other units. Overall dimensions are based on 3-pass evap/2 pass cond and LH/RH water connections. Refer to TOPSS for exact job configurations.

Table 6. General Data

	Unit Designator (corresponds to digits 6, 7, 14, 15, 21, 22 of unit model number)							
	C1C2D2	C1D6E5	C1D5E4	C1D3E3	C1E1F1	C2D4E4	C2D3E3	
General								
Refrigerant Type	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	
Refrigerant Charge	490	490	490	490	525	490	490	
(lb (kg))	(222)	(222)	(222)	(222)	(238)	(222)	(222)	
Oil Charge	6	10	10(38)	10	11	10	10	
(gal(l))	(23)	(38)		(38)	(42)	(38)	(38)	
Operating Weight	13104	13889	14127	14865	15657	14171	14854	
(with Filter, (lb(kg))	(5944)	(6300)	(6408)	(6743)	(7102)	(6428)	(6738)	
Operating Weight	12475	13007	13245	13983	14//5	13289	13972	
(Without Filter, (ID(Kg))	(5059)	(5900)	(6008)	(0343)	(6/02)	(6028)	(0338)	
Snipping Weight (with Filter (lb(kg))	12334 (5595)	13271	13426	13822	14473	13470	13811 (6265)	
Shipping Weight	11706	12380	12544	120/1	13501	12588	12030	
(without Filter (lb(kg))	(5310)	(5620)	(5690)	(5870)	(6165)	(5710)	(5865)	
Overall Dimensions	(0010)	(0020)	(3030)	(00/0)	(0100)	(0/20)	(0000)	
Length	153	139	139	139	157	139	139	
(with Filter, in(mm))	(3878)	(3534)	(3534)	(3534)	(3998)	(3534)	(3534)	
Length	153	139	139	139	157	139	139	
(without Filter, in(mm))	(3878)	(3534)	(3534)	(3534)	(3998)	(3534)	(3534)	
Width	100	100	100	105	100	100	100	
(with Filter, in(mm))	(2533)	(2551)	(2551)	(2674)	(2551)	(2551)	(2551)	
Width	72	72	72	72	72	72	72	
(without Filter, in(mm))	(1850)	(1840)	(1840)	(1840)	(1840)	(1840)	(1840)	
Height (with Filter, in(mm))	89 (2253)	90 (2294)	90 (2294)	90 (2294)	90 (2294)	90 (2294)	90 (2294)	
Height	89	90	90	90	90	90	90	
(without Filter, in(mm))	(2253)	(2294)	(2294)	(2294)	(2294)	(2294)	(2294)	
Evaporator								
Water Storage	58	45	52	78	82	52	78	
(gal (l))	(220)	(170)	(197)	(295)	(311)	(197)	(295)	
Minimum Flow	347 (22) for	293 (18) for	351 (21) for	465(31) for	450 (28) for	351 (21) for	465 (31) for	
(gpm (l/s))	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	
Water	232 (15) for	196 (12) for	234 (15) or	324(20) or	300 (19) for	234 (15) or	324 (20) for	
	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	
Minimum Flow	375 (24) for	352 (22) for	422 (27) for	584(37) for	487 (31) for	422 (27) for	584 (37) for	
(gpm (l/s))Brine	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	
	2/6 (1/) for	233 (15) for	281 (18) for	389(25) or	357 (23) for	281 (18) for	389 (25) for	
Maximum Elow	1521 (07)	1 207 (01)	1542 (07)	2121/124)	1090 (125)	1542 (07)		
(apm (l/s))	1551 (97) for	1207 (01) for	1342 (97) for	2131(134) for	1960 (125) for	1342 (97) for	2131 (134) for	
(9pm (73))	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	
-	1022 (150)	860 (54)	1028 (65)	1417(89)	1320 (83)	1028 (65)	1417 (89)	
	for	for	for	for	for	for	for	
	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	
Condenser (all are 2-	pass)							
Water Storage	34	29	32	47	60	32	47	
(gal (I))	(129)	(110)	(121)	(178)	(226)	(121)	(178)	
Minimum Flow	212	206	245	325	375	245	325	
(gpm (I/s))Water	(13)	(13)	(15)	(21)	(24)	(15)	(21)	
Minimum Flow	255	250	295	390	450	295	390	
	035	010	1080	1420	1650	1080	1420	
(gpm (l/s))	(59)	(57)	(68)	(90)	(104)	(68)	(90)	

All weights $\pm 3\%$, include standard 150 psig water boxes.

Operating weights include standard 150 psig water boxes. Operating weights include refrigerant, oil, and water charges, the value of the unit height in the table is for 460V/60HZ, 50HZ and 380V/60HZ unit should reduce 200mm. If oil cooler is installed, add 1/4 gal (1 liter) to the oil charge value given for B family units; add 1.0 gal (4 liters) for all other units. Overall dimensions are based on 3-pass evap/2 configurations pass cond and LH/RH water connections. Refer to TOPSS for exact job configu-

rations.

Table 7. General Data

	U	nit Designa	tor (corresp	onds to di	gits 6, 7, 14	4, 15, 21, 2	2 of unit m	odel numbe	er)
	C2E1F1	C2F2F3	B1B1B1	B1C1D1	B2B2B2	B2C2D2	D4H1G4	D4H2G5	D4H3G6
General									
Refrigerant Type	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a	HFC-134a
Refrigerant Charge	525	700	410	490	410	490	882	882	882
<u>(lb (kg))</u>	(238)	(318)	(186)	(222)	(186)	(222)	(400)	(400)	(400)
Oil Charge	11	12	7.5	7.5	7.5	7.5	8.7	8.7	8.7
(gal(I))	(42)	(45)	(28)	(28)	(28)	(28)	(33)	(33)	(33)
Operating Weight	1565/	16558	10441	11155	10560	11296	20578	21224	22364
Operating Weight	14775	15930	9812	10527	9931	10668	19334)	20020	21158
(without Filter, (lb(ka))	(6702)	(7226)	(4451)	(4775)	(4505)	(4839)	(8788)	(9081)	(9597)
Shipping Weight	14473	15156	9865	10438	9942	10527	17644	18027	18722
(with Filter, (lb(kg))	(6565)	(6875)	(4475)	(4735)	(4510)	(4775)	(8003)	(8177)	(8492)
Shipping Weight	13591	14528	9237	9810	9314	9898	16440	16823	17518
(without Filter, (lb(kg))	(6165)	(6590)	(4190)	(4450)	(4225)	(4490)	(7457)	(7631)	(7946)
Overall Dimensions									
Length	139	156	134	153	134	153	163	163	163
(with Filter, in(mm))	(3534)	(3958)	(3414)	(3878)	(3414)	(38/8)	(4130)	(4130)	(4130)
Length	139	156	134	153	134	153	163	163	163
(Without Filter, III(IIIII))	(3534)	(3936)	(3414)	(3676)	(3414)	(3676)	(4130)	(4130)	(4130)
(with Filter in(mm))	(2674)	(2551)	97 (2463)	97 (2463)	(2463)	97	(2662)	(2662)	(2662)
Width	73	72	69	69	69	69	77	<u>(2002)</u> 77	77
(without Filter, in(mm))	(1860)	(1840)	(1759)	(1759)	(1759)	(1759)	(1953)	(1953)	(1953)
Height	83	90	88	88	88	88	95	95	95
(with Filter, in(mm))	(2120)	(2296)	(2227)	(2227)	(2227)	(2227)	(2403)	(2403)	(2403)
Height	83	90	88	88	88	88	95	95	95
(without Filter, in(mm))	(2120)	(2296)	(2227)	(2227)	(2227)	(2227)	(2403)	(2403)	(2403)
Evaporator									
Water Storage	82	107	41	55	45	58	136	146	171
(gal (l))	(311)	(405)	(155)	(208)	(170)	(220)	(516)	(552)	(646)
Minimum Flow	450 (28)	604 (38)	253 (16)	320 (18)	288 (22)	347 (22)	427(27)	481(30)	596(38)
(gpm (l/s))	for	for	for	for	for	for	for	for	for
water	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	220(20)		
	300 (19) for	404 (25) for	108 (11) for	213 (12) for	192 (15) for	232 (15) for	320(20) for	301(23) for	447(28) for
	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	4-pass	4-pass	4-pass
Minimum Flow	487 (31)	725 (46)	303 (19)	346 (22)	346 (22)	375 (24)	520(33)	580(37)	720(45)
(gpm (l/s))Brine	for	for	for	for	for	for	for	for	for
	2-pass	2-pass	2-pass	2-pass	2-pass	2-pass	3-pass	3-pass	3-pass
	357 (23)	487 (31)	200 (13) for	254 (16)	233 (15)	276 (17)	380(24)	430(27)	540(34)
	for	for	3-pass	for	for	for	for	for	for
	3-pass	3-pass	1101 (70)	3-pass	3-pass	3-pass	4-pass	4-pass	4-pass
Maximum Flow	1980 (152)	2667 (168)	1104 (70)	1412 (89)	1266 (80)	1531 (97)	1564(99)	1/63(111)	2186(138)
(gpiii (i/s))	101 2-nass	101 2-nass	101 2-nass	2-nass	101 2-nass	7-nass	3-nass	3-nass	101 3-nass
	1320 (83)	1780 (112)	736 (46)	941 (59)	844 (53)	1022 (65)	1173(74)	1323(83)	1640(103)
	for	for	for	for	for	for	for	for	for
	3-pass	3-pass	3-pass	3-pass	3-pass	3-pass	4-pass	4-pass	4-pass
Condenser (all are 2-	pass)								
Water Storage	60	61	28	31	29	34	101	123	155
(gal (l))	(226)	(231)	(106)	(117)	(110)	(129)	(383)	(467)	(585)
Minimum Flow	357	355	193	193	212	212	423	551	730
(gpm (l/s))Water	(24)	(22)	(12)	(12)	(13)	(13)	(27)	(35)	(46)
Minimum Flow	450	460	230	230	255	255	500	660	870
(gpm (I/s))Brine	(28)	(29)	(15)	(15)	(16)	(10)	(32)	(42)	(55)
Max Flow	1650	1/00	850	850	935	935	1552	2021	26//
(ghin (i/s))	(104)	(107)	(34)	(34)	(39)	(39)	(90)	(120)	(209)

All weights ±3%, include standard 150 psig water boxes. Operating weights include refrigerant, oil, and water charges, the value of the unit height in the table is for 460V/60HZ, 50HZ and 380V/60HZ unit should reduce 200mm.

If oil cooler is installed, add 1/4 gal (1 liter) to the oil charge value given for B family units; add 1.0 gal (4 liters) for all other units. Overall dimensions are based on 3-pass evap/2 pass cond and LH/RH water connections. Refer to TOPSS for exact job configurations.

Installation Mechanical

Storage

If the chiller is to be stored more than one month prior to installation, observe the following precautions:

- Do not remove the protective coverings from the electrical panel.
- Store the chiller in a dry, vibration-free, secure area.
- At least every three months, attach a gauge and manually check the pressure in the refrigerant circuit. If the refrigerant pressure is below 71 psig at 70oF (or 46 psig at 50oF), call a qualified service organization and the appropriate Trane sales office.

Note: Pressure will be approximately 20 psig if shipped with the optional nitrogen charge.

Location Requirements

Noise Considerations

- Refer to Trane Engineering Bulletin –150-450 Ton AdaptiR[™] with AFD option Water-Cooled Series R[®] Chillers Sound Ratings and Installation Guide.for sound consideration applications.
- Locate the unit away from sound-sensitive areas.
- Install the isolation pads under the unit. Refer to "Unit Isolation."
- Install rubber vibration isolators in all water piping.
- Use flexible electrical conduit for final connection to the Symbio800.
- Seal all wall penetrations.

Note: Consult an acoustical engineer for critical applications.

Foundation

Provide rigid, non-warping mounting pads or a concrete foundation of sufficient strength and mass to support the chiller operating weight (including completed piping and full operating charges of refrigerant, oil and water).

Refer to Table 8 ~ Table 11 for unit operating weights.

Once in place, level the chiller within 1/4" (6.35 mm) over its length and width.

The Trane Company is not responsible for equipment problems resulting from an improperly designed or constructed foundation.

Vibration Eliminators

- Provide rubber boot type isolators for all water piping at the unit.
- Provide flexible conduit for electrical connections to the unit.
- Isolate all pipe hangers and be sure they are not supported by main structure beams that could introduce vibration into occupied spaces.
- Make sure that the piping does not put additional stress on the unit.
- **Note:** Do not use metal braided type eliminators on the water piping. Metal braided eliminators are not effective at the frequencies at which the unit will operate.

Clearances

Provide enough space around the unit to allow the installation and maintenance personnel unrestricted access to all service points. Refer to submittal drawings for the unit dimensions.

Allow adequate clearance for condenser and compressor servicing. A minimum of three feet is recommended for compressor service and to provide sufficient clearance for the opening of con-

trol panel doors. Refer to Figure 6 and Figure 7 for minimum clearances required for condenser tube service. In all cases, local codes will take precedence over these recommendations.

Note: Required vertical clearance above the unit is 36" (914.4 mm). There should be no piping or conduit located over the compressor motor.

If the room configuration requires a variance to the clearance dimensions, contact your Trane sales office representative.

Figure 6. Recommended Operating and Service Clearances (without filter)

Note: Maximum clearances are given. Depending on the unit configuration, some units may require less clearance than others in the same category.

Ventilation

The unit produces heat even though the compressor is cooled by the refrigerant. Make provisions to remove heat generated by unit operation from the equipment room. Ventilation must be adequate to maintain an ambient temperature lower than 104°F (40°C).

Vent the evaporator, condenser and compressor pressure relief valves in accordance with all local and national codes. Refer to Table 15.

Make provisions in the equipment room to keep the chiller from being exposed to freezing temperatures (32°F/0°C).

Water Drainage

Locate the unit near a large capacity drain for water vessel drain-down during shutdown or repair. Condensers and evaporators are provided with drain connections. Refer to "Water Piping." All local and national codes apply.

Access Restrictions

Door clearances for the AdaptiR[™] with AFD option units are given in Figure 6 and Figure 7. Refer to the unit submittals for specific "per unit" dimensional information.

Moving and Rigging

The Model AdaptiR[™] with AFD option chiller should be moved by lifting at designated lift points only. Refer to Figure 11 and Table 8 ~ Table 11 for typical unit lifting and operating weights. Refer to the rigging diagram that ships with each unit for specific "per unit" weight data.

Heavy Equipment!

Always use lifting equipment with a capacity exceeding unit lifting weight by an adequate safety factor. (+10%). Follow the procedures and diagrams in this manual and in the submittal. Failure to do so can result in death or serious injury.

Figure 9. Unit Weights and Dimensions for Rigging (with filter)

Installation Mechanical

	Location	(points)		
Unit Designator*	Α	B	С	D
B1B1B1	/	/	/	/
B2B2B2	/	/	/	/
B1C1D1	/	/	/	/
B2C2D2	/	/	/	/
C1C2D2	3360	2641	3252	2125
	(1524)	(1198)	(1475)	(964)
D1D1E1	3726	2912	4224	2714
	(1690)	(1321)	(1916)	(1231)
D2D2E2	3/46	2939	4242	2/65
620252	(1699)	(1333)	(1924)	(1254)
C2D3E3	3545	2//3	3968	2641
	(1608)	(1258)	(1800)	(1198)
C2D4E4	3492	2054	3915	2524
	(1584)	(1204)	(1776)	(1145)
C2E1F1	4167	2879	3847	2970
	(1890)	(1306)	(1745)	(1347)
D3D2E2	3746	2939	4242	2765
	(1699)	(1333)	(1924)	(1254)
E3D2E2	3662	2859	4149	2665
	(1661)	(1297)	(1882)	(1209)
C1D5E4	3497	2646	3902	2502
	(1586)	(1200)	(1770)	(1135)
C1D6E5	3461	2601	3865	2460
	(1570)	(1180)	(1753)	(1116)
C1D3E3	3549	2778	3973	2643
	(1610)	(1260)	(1802)	(1199)
C1E1F1	4085	2824	3772	2912
	(1853)	(1281)	(1711)	(1321)
D1F1F2	4484	3258	4140	3309
	(2034)	(1478)	(1878)	(1501)
D2F2F3	4550	4209	4209	3318
	(2064)	(1909)	(1909)	(1505)
D3F2F3	4550	3265	4209	3318
	(2064)	(1481)	(1909)	(1505)
E3F2F3	4656	3329	4306	3364
	(2112)	(1510)	(1953)	(1526)
C2F2F3	4270	3948	3948	3124
	(1937)	(1791)	(1791)	(1417)
D1G1G1	4764	3545	4453	3834
	(2161)	(1608)	(2020)	(1739)
D2G2G1	4863	3633	4544	3933
	(2206)	(1648)	(2061)	(1/84)
D3G2G1	4877	3644	4557	3942
	(2212)	(1653)	(2067)	(1/88)
D3G3G3	5000	3847	4793	4098
520201	(2268)	(1745)	(2174)	(1859)
E3G2G1	4991	3/52	4/05	4004
E2C2C2/E2U2C2	(2264)	(1/02)	(2134)	(1816)
εουσοί εο Ησοσ	5066	3898	4856	4153
DAULICA	(2298)	(1/68)	(2203)	(1884)
D4H1G4	6099	2/21		6269
DAHOCE	(2/66)	(1234)	(1255)	(2843)
D4U2G3	(2010)	2941	2905	8020 (2000)
D4H2C6	(2010)	(1334)	(1354)	(2000)
00011+0	0440 (2022)	3249 (1171)	3293 (1404)	(3004)
* Unit Designator (corresponde to	(2323) o diaits 6 7 14 15 21 23	(14/4) Of unit model num	(1494)	(3004)

Table 8. Unit Weight(Unit with big panel, lb(kg))

Unit Designator (corresponds to digits 6,7,14,15,21,22 of unit model number)

Location (points) D Unit Designator* С A R 2652 1792 B1B1B1 1856 2937 (1203) (842) (813) (1332) B2B2B2 2670 1876 1812 2956 (1211) (851) (822) (1341)B1C1D1 3230 2103 1616 2654 (1465) (954) (733) (1204)B2C2D2 1889 1825 2712 2952 (1230) (857) (828) (1339) C1C2D2 3241 2253 2421 3525 (1470) (1022) (1098)(1599)D1D1E1 3616 2482 2912 4416 (1640)(1126) (1321)(2003)D2D2E2 3633 2533 2939 4433 (2011) (1648) (1149)(1333) C2D3E3 3430 2414 2773 4162 (1556) (1095) (1258) (1888) C2D4E4 3373 2286 2654 4118 (1530) (1204) (1868) (1037)C2E1F1 4072 2745 2879 4012 (1847)(1245) (1306)(1820)D3D2E2 2533 4433 3633 2939 (1648) (1149) (1333) (2011) E3D2E2 3552 2456 2859 4321 (1297) (1960) (1611)(1114)C1D5E4 3362 2280 2646 4103 (1525) (1034)(1200)(1861) C1D6E5 3327 2238 2601 4065 (1509)(1015)(1180)(1844)C1D3E3 3435 2414 2778 4165 (1558)(1095)(1260)(1889)C1E1F1 3993 2692 2824 3935 (1785) (1811)(1221)(1281)D1F1F2 4367 3111 3258 4303 (1981) (1411)(1478)(1952) D2F2F3 4436 3126 4209 4367 (2012) (1418)(1909) (1981) D3F2F3 4436 3126 3265 4367 (2012) (1418)(1481)(1981) E3F2F3 4537 3179 3329 4456 (2058) (2021) (1510)(1442)C2F2F3 4165 2932 3948 4103 (1889) (1330) (1791) (1861) D1G1G1 4650 3640 3545 4612 (2109) (1651)(1608)(2092)D2G2G1 4751 3739 3633 4702 (2155)(1696)(1648)(2133)D3G2G1 4762 3748 3644 4716 (2160)(1700) (1653) (2139) D3G3G3 4885 3871 3768 4839 (2195) (2216) (1709)(1756)E3G2G1 4872 3821 3752 4855 (2210) (1733)(1702)(2202) E3G3G3/E3H3G3 4950 3818 3923 4903 (2224) (2245) (1779) (1732) D4H1G4 6099 2721 6269 2766 (2766) (1234) (1255) (2843) D4H2G5 6195 2941 2985 6368 (2810) (1334)(1354)(2888)D4H3G6 6445 3249 3293 6622 (2923) (1474) (1494)(3004)

Table 9. Unit Weight(Unit with small panel, lb(kg))

* Unit Designator (corresponds to digits 6,7,14,15,21,22 of unit model number)

Unit Designator* A B1B1B1 / B2B2B2 / B1C1D1 / B2C2D2 / C1C2D2 3366 (1527) 01D1E1 D1D1E1 3757 (1704) 02D2E2 D2D2E2 3774 (1712) C2D3E3 C2D4E4 3510 (1621) (1592) C2E1F1 4076 (1849) 03D2E2 3774 (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) 01F1F2 4515 (2048) D2F2F3 4590	B/ / / / 	C/	D/
B1B1B1 / B2B2B2 / B1C1D1 / B2C2D2 / C1C2D2 3366 (1527) D1D1E1 3757 (1704) D2D2E2 3774 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (3023)	/ / / 	/ / /	/
B2B2B2 / B1C1D1 / B2C2D2 / C1C2D2 3366 (1527) 0101E1 D1D1E1 3757 (1704) 0202E2 D2D2E2 3774 (1712) C2D3E3 C2D4E4 3510 (1592) C2E1F1 Q2D2E2 3774 (1592) C2E1F1 C105E4 3516 (1578) (1578) C1D5E4 3576 (1578) (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3	/ / / 	/ /	/
b2b2b2 / B1C1D1 / B2C2D2 / C1C2D2 3366 (1527) 0101E1 D1D1E1 3757 (1704) 0202E2 D2D2E2 3774 (1712) C2D3E3 C2D4E4 3510 (1592) C2E1F1 C2D4E4 3510 (1712) E3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3	/ / / 3247	/	/
B1C1D1 / B2C2D2 / C1C2D2 3366 (1527) D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590	/ / / 	/	/
/ B2C2D2 / C1C2D2 3366 (1527) D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) D2F2F3	// 	/	
B2C2D2 / C1C2D2 3366 (1527) D1D1E1 D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 C2D4E4 3510 (1592) C2E1F1 Q2D2E2 3774 (1712) E3D2E2 C1D5E4 3516 (1578) C1D5E4 C1D5E3 3576 (1578) C1D3E3 C1D3E3 3576 (1622) C1E1F1 Q1673 3515 Q2048) D2F2F3	/ 3247	· · ·	/
/ C1C2D2 3366 (1527) D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D5E4 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (3202)	/ 3247		
C1C2D2 3366 (1527) D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1D1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590	3247	/	/
(1527) D1D1E1 3757 (1704) D2D2E2 3774 (1712) (1712) C2D3E3 3574 (1621) (1621) C2D4E4 3510 (1592) (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1678) C1D5E4 3576 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590		3501	2130
D1D1E1 3757 (1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) (1621) C2D4E4 3510 (1592) (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1578) C1D4E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) D2F2F3	(1473)	(1588)	(966)
(1704) D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590	2972	3525	2736
D2D2E2 3774 (1712) C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) D2F2F3	(1348)	(1599)	(1241)
(1712) C2D3E3 3574 (1621) (1621) C2D4E4 3510 (1592) (1592) C2E1F1 4076 (1849) 03D2E2 D3D2E2 3774 (1712) E3D2E2 E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1595) C1D6E5 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) D2F2F3	3023	3552	2787
C2D3E3 3574 (1621) C2D4E4 3510 (1592) C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3	(1371)	(1611)	(1264)
(1021) C2D4E4 3510 (1592) (1592) C2E1F1 4076 (1849) 03D2E2 D3D2E2 3774 (1712) E3D2E2 E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1595) C1D6E5 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 Q2F2F3 (2048) (2048) (2022)	(1260)	5252	(1207)
C2E1F1 (1592) C2E1F1 4076 (1849) (1849) D3D2E2 3774 (1712) (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1595) C1D6E5 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) (2023)	2661	3124	2538
C2E1F1 4076 (1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590	(1207)	(1417)	(1151)
(1849) D3D2E2 3774 (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1595) C1D6E5 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) (2023)	3133	3148	2906
(13) 12) D3D2E2 3774 (1712) (1712) E3D2E2 3699 (1678) (1678) C1D5E4 3516 (1595) (1595) C1D6E5 3479 (1578) (1578) C1D3E3 3576 (1622) (1622) C1E1F1 4116 (1867) D1F1F2 D1F1F2 4515 (2048) 02F2F3	(1421)	(1428)	(1318)
(1712) E3D2E2 (1772) E3D2E2 (1678) (1578) (1595) C1D5E4 (1595) C1D6E5 (1578) (1578) (1578) C1D3E3 (1622) C1E1F1 (11667) D1F1F2 (4515) (2048) (2023)	3023	3552	2787
E3D2E2 3699 (1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	(1371)	(1611)	(1264)
(1678) C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (3023)	2952	3446	2694
C1D5E4 3516 (1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2023)	(1339)	(1563)	(1222)
(1595) C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590	2652	3113	2515
C1D6E5 3479 (1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	(1203)	(1412)	(1141)
(1578) C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	2610	3071	2474
C1D3E3 3576 (1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	(1184)	(1393)	(1122)
(1622) C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	2780	3234	2663
C1E1F1 4116 (1867) D1F1F2 4515 (2048) D2F2F3 4590 (2022)	(1261)	(1467)	(1208)
(1867) D1F1F2 4515 (2048) D2F2F3 4590 (2023)	3161	3177	2932
D1F1F2 4515 (2048) D2F2F3 4590 (3093)	(1434)	(1441)	(1330)
(2048) D2F2F3 4590 (3093)	3743	3732	3333
D2F2F3 4590	(1698)	(1693)	(1512)
(2002)	3748	4685	3349
(2082)	(1700)	(2125)	(1519)
D3F2F3 4590	3748	3732	3349
(2082)	(1700)	(1693)	(1519)
E3F2F3 4691	3807	3799	3391
(2128)	(1727)	(1723)	(1538)
C2F2F3 4165	3276	4158	3049
(1889)	(1486)	(1886)	(1383)
D1G1G1 4802	4292	3986	3865
(2178)	(1947)	(1808)	(1753)
D2G2G1 4903	4392	4074	3964
(2224)	(1992)	(1848)	(1798)
D3G2G1 4914	4400	4085	3973
(2229)	(1996)	(1853)	(1802)
D3G3G3 5038	4817	5681	4127
(2285)	(2185)	(25//)	(18/2)
E3G2G1 502/	4475	4195	4032
E3G3G3/E3H3G3 E101	(2030) 7077	(1903)	(1829)
233337231333 3101 (2214)	+0// (7717)	(2600)	41/9
D4H1G4 5020	2670	(2009)	5070
٥٤٥٤	(1660)	(1600)	(2711)
(2046) D4H2G5 5934	3899	3747	6077
(2692)	(1769)	(1700)	(2756)
D4H3G6 6184	(1,05) 7007	4055	6331
(2805)	4/11/	1000	(2072)

Table 10. Unit Weight with filter(Big frame panel, lb(kg))

Unit Designator (corresponds to digits 6,7,14,15,21,22 of unit model number)

Location (points) D Unit Designator* С A R 2661 B1B1B1 2161 2097 2948 (1207) (980) (951) (1337) B2B2B2 2679 2178 2116 2967 (1215) (988) (960) (1346) B1C1D1 3309 2518 1892 2721 (858) (1501)(1142)(1234)B2C2D2 2721 2258 2066 2961 (1234)(1024)(937) (1343)C1C2D2 3250 2857 2183 3534 (1474)(1296)(990) (1603)D1D1E1 3644 2972 3525 4451 (1653) (1348) (1599)(2019) D2D2E2 3664 3023 3552 4469 (2027) (1662)(1371)(1611)C2D3E3 3457 2778 3232 4193 (1568)(1260)(1466)(1902)C2D4E4 3391 2661 4138 3124 (1538)(1207)(1417)(1877)C2E1F1 3984 3133 3148 3926 (1807) (1421) (1428) (1781) D3D2E2 3023 3552 4469 3664 (1662)(1371)(1611)(2027)E3D2E2 3591 2952 3446 4370 (1563) (1982) (1629)(1339)C1D5E4 3382 3113 4125 2652 (1534)(1203)(1412)(1871)C1D6E5 3344 3071 4087 2610 (1517)(1184)(1393)(1854)C1D3E3 3459 2780 3234 4198 (1569)(1261) (1467) (1904) C1E1F1 4021 3161 3177 3964 (1434) (1441) (1798) (1824)D1F1F2 4398 3743 3732 4334 (1995) (1698) (1693) (1966)D2F2F3 4475 3748 4685 4405 (2030)(1700)(2125)(1998)D3F2F3 4475 3748 3732 4405 (2030)(1700)(1693)(1998)E3F2F3 3807 4575 3799 4491 (2075) (1723) (1727)(2037)C2F2F3 4061 3276 4158 4001 (1842)(1486)(1886)(1815)D1G1G1 3199 2928 2721 3172 (1451)(1328)(1234)(1439)D2G2G1 4740 4786 4392 4074 (2171)(1992)(1848)(2150)D3G2G1 4799 4400 4085 4751 (2177) (1996) (1853)(2155)D3G3G3 4923 4890 4647 4874 (2211) (2108) (2233) (2218) E3G2G1 4907 4475 4195 4890 (2226)(2030) (1903) (2218)E3G3G3/E3H3G3 4705 4935 4984 4951 (2261) (2246)(2134)(2239)D4H1G4 5838 3679 3527 5978 (1600) (2711) (2648) (1669)D4H2G5 5934 3899 3747 6077 (1700)(2756) (2692) (1769)D4H3G6 6184 4207 4055 6331 (2805) (1908) (1839)(2872)

Table 11. Unit Weight with filter(Small frame panel, lb(kg))

Unit Designator (corresponds to digits 6,7,14,15,21,22 of unit model number)

Note: Max weight are given. Depending on the unit configuration, some units' may less than others in the same category.

Installation Mechanical

Unit Designator*	X	Y	Z
B1B1B1	21.48	57.22	36.70
	(546)	(1453)	(932)
B2B2B2	21.53	57.20	36.54
	(547)	(1453)	(928)
B1C1D1	21.06	57.35	34.80
	(535)	(1457)	(884)
B2C2D2	21.15	57.43	34.64
	(537)	(1459)	(880)
D1D1E1	24.72	59.18	41.33
	(628)	(1503)	(1050)
D2D2E2	24.80	59.15	41.18
	(630)	(1502)	(1046)
C2D3E3	24.91	58.89	40.98
	(633)	(1496)	(1041)
C2D4E4	24.81	58.83	41.05
	(630)	(1494)	(1043)
C2E1E1	25.25	62 78	41 77
	(6.41)	(1505)	(10(1)
D3D3E3	24.80	(1595)	(1061)
D3D2E2	24.80	59.15	41.18
525252	(630)	(1502)	(1046)
E3D2E2	24.74	59.12	41.36
	(628)	(1502)	(1050)
CID5E4	24.81	58.70	43.41
	(630)	(1491)	(1103)
CID6E5	24.80	58.68	41.07
	(630)	(1491)	(1043)
C1D3E3	24.91	58.89	40.98
	(633)	(1496)	(1041)
C1E1F1	25.25	62.78	41.77
	(641)	(1595)	(1061)
D1F1F2	26.84	62.59	39.55
	(682)	(1590)	(1004)
D2F2F3	26.69	62.55	38.99
	(678)	(1589)	(990)
D3F2F3	26.69	62.55	38.99
	(678)	(1589)	(990)
E3F2F3	26.62	62.53	39.17
	(676)	(1588)	(995)
C2F2F3	26.88	62.68	39.52
	(683)	(1592)	(1004)
D1G1G1	29.64	67.60	38.70
	(753)	(1717)	(983)
D2G2G1	29.65	67.61	38.69
	(753)	(1717)	(983)
D3G2G1	29.64	67.61	38.70
	(753)	(1717)	(983)
E3G2G1/E3G3G3/E3H3G3	29.85	62.69	39.56
	(758)	(1592)	(1005)
D4H1G4	26.77	64.41	42.32
	(680)	(1636)	(1075)
D4H2G5	27.20	64.57	41.81
	(691)	(1640)	(1062)
D4H3G6	27.60	64.61	40.83
	(701)	(1641)	(1037)

Table 12. Center of Gravity(in(mm))

* Designator correponds to digits 6,7,14,15,21,22 of model number

Unit Designator* Х Υ Ζ B1B1B1 24.52 56.72 35.96 (623) (1441) (913) B2B2B2 24.56 56.70 35.82 (1440) (910) (624) B1C1D1 23.97 56.71 34.21 (609) (1440)(869) B2C2D2 24.02 56.80 34.06 (610) (865) (1443)D1D1E1 28.63 58.83 40.23 (727) (1494) (1022) D2D2E2 28.68 58.80 40.09 (1494) (729) (1018)C2D3E3 27.99 58.63 40.13 (1019) (711)(1489)C2D4E4 28.12 58.56 40.14 (714)(1487)(1019)C2E1F1 28.18 62.10 40.91 (1577) (1039)(716)D3D2E2 28.68 58.80 40.09 (729) (1494) (1018)E3D2E2 28.59 58.67 40.27 (72<u>6</u>) (1490)(1023) C1D5E4 58.43 42.35 28.12 (714)(1484)(1076)C1D6E5 28.15 58.41 40.14 (1484) (715) (1019)C1D3E3 27.99 58.63 40.13 (1019)(711)(1489)C1E1F1 62.10 40.91 28.18 (716)(1577)(1039)D1F1F2 30.35 61.78 38.66 (771)(1569)(982) D2F2F3 30.09 61.77 38.16 (1569)(969) (764)D3F2F3 30.09 61.77 38.16 (764)(1569)(969) E3F2F3 30.01 38.34 61.76 (762) (1569)(974) C2F2F3 29.48 62.07 38.86 (749) (1577) (987) D1G1G1 32.81 66.69 38.08 (833) (1694)(967) D2G2G1 32.80 66.70 38.08 (833) (1694)(967) D3G2G1 32.80 66.69 38.08 (833) (1694)(967) E3G2G1/E3G3G3/E3H3G3 32.98 62.07 38.91 (838) (1576)(988) D4H1G4 31.54 63.39 41.26 (801) (1610) (1048)D4H2G5 31.81 63.54 40.83 (808)(1614)(1037)D4H3G6 32.05 39.92 64.76 (814) (1645) (1014)

Table 13. Center of Gravity with Filter(in(mm))

* Unit Designator(corresponds to digits 6,7,14,15,21,22 of unit model number)
Lifting Procedure

In the process of shipping and maintaince, if the control panel need to be disassembly, the recommended lifting method as follows:

Figure 10. Recommended Lifting Method

Equipment Damage!

Never use a forklift to move the unit. The skid is not designed to support the unit at any one point and using a forklift to move the equipment may cause unit damage. Always position the lifting beam so that cables do not contact the unit. Failure to do so may result in unit damage.

Note: If absolutely necessary, the chiller can be pushed or pulled across a smooth surface if it is bolted to wood shipping mounts.

Shipping Mounts!

Do not use the threaded holes in the compressor to lift or assist in lifting the unit. They are not intended for that purpose and could create a dangerous situation. Do not remove the wood mounts until the unit is in its final location. Removal of wood shipping mounts prior to unit final locating could result in death or serious injury or equipment damage.

- 1. When the unit is at its final location, remove the shipping bolts that secure the unit to the wood base mounts.
- 2. Rig the unit properly and lift from above or jack the unit (alternate moving method). Use the points shown on the rigging diagram that ships with the unit as shown in Figure 11. Remove the base mounts.
- Install clevis connectors in lifting holes provided on the unit. Attach lifting chains or cables to clevis connectors as shown in Figure 11. Each cable alone must be strong enough to lift the chiller.

Table 14. Rigging

Unit	Dimension (mm (in))						
Designator*	Α	В	С	D	E	F	
E3G2G1/E3G3G3/E3H3G3	3658	3353	1592	20	661	610	
	(144.02)	(132.01)	(62.69)	(0.79)	(26.02)	(24.02)	
E3F2F3	3658	3353	1588	29	615	610	
	(144.02)	(132.01)	(62.53)	(1.14)	(24.21)	(24.02)	
E3D2E2	3048	2743	1502	116	612	610	
	(120.00)	(107.99)	(59.12)	(4.57)	(24.09)	(24.02)	
D3G2G1	3658	3353	1717	99	654	610	
	(144.02)	(132.01)	(67.61)	(3.90)	(25.75)	(24.02)	
D3F2F3	3658	3353	1589	101	617	610	
	(144.02)	(132.01)	(62.55)	(3.98)	(24.29)	(24.02)	
D3D2E2	3048	2743	1502	188	614	610	
	(120.00)	(107.99)	(59.15)	(7.40)	(24.17)	(24.02)	
D2G3G3/D3G3G3	3658	3353	1594	99	654	610	
	(144.02)	(132.01)	(62.76)	(3.90)	(25.75)	(24.02)	
D2G2G1	3658	3353	1717	99	654	610	
	(144.02)	(132.01)	(67.61)	(3.90)	(25.75)	(24.02)	
D2F2F3	3658	3353	1589	101	61/	610	
	(144.02)	(132.01)	(62.55)	(3.98)	(24.29)	(24.02)	
D2D2E2	3048	2743	1502	188	614	610	
	(120.00)	(107.99)	(59.15)	(7.40)	(24.17)	(24.02)	
DIGIGI	3658	3353	1/1/	97	661	610	
	(144.02)	(132.01)	(67.60)	(3.82)	(26.02)	(24.02)	
DIG2G2	3038	3353	1595	97	(26,02)	(24.02)	
	(144.02)	(132.01)	(62.80)	(3.82)	(26.02)	(24.02)	
DIFIFZ	3038	3353	1590	99	622	(24.02)	
D1D1E1	2049	(132.01)	1502	(3.90)	(24.49)	610	
DIDILI	(120.00)	(107.00)	(50.19)	107	(24.00)	(24.02)	
	3658	3353	1592	101	617	610	
C21215	(144.02)	(132.01)	(62,68)	(3.98)	(24.29)	(24.02)	
C2F1F1	3658	3353	1595	129	674	610	
CZLII I	(144.02)	(122.01)	(62 79)	(5.09)	(24 57)	(24.02)	
	(144.02)	(132.01)	(02.76)	(3.08)	(24.37)	(24.02)	
C2D3E3	3048	2743	1490	225	810	(24.02)	
C2D4E4	(120.00)	(107.99)	(36.69)	(0.00)	(24.33) 	(24.02)	
C2D4L4	(120.00)	(107.00)	1494	(9.62)	(22.00)	(24.02)	
C1E1E1	3658	3353	1595	129	624	610	
CILITI	(144.02)	(132.01)	(62,78)	(5.08)	(24.57)	(24.02)	
C1D3E3	3408	2743	1496	225	618	610	
CIDSES	(120.00)	(107.00)	(59.90)	(0.06)	(24.22)	(24.02)	
	(120.00)	(107.99)	(36.69)	(8.80)	(24.33)	(24.02)	
CID5E4	3048	2743	1491	219	584	610	
CIDGEE	(120.00)	(107.99)	(58.70)	(8.62)	(22.99)	(24.02)	
CIDGES	(120.00)	(107.00)	(50 60)	210	202	(24.02)	
	(120.00)	(107.99)	1450	(0.30)	(22.91) 	610	
CIC2D2	(144.02)	(132.01)	(57 44)	(3.66)	(20.50)	(24.02)	
	3658	3323	1450	(3.00)	<u>(20.39)</u> 572	610	
	(144 02)	(132.01)	(57.43)	(3.66)	(20.59)	(24.02)	
B2B2B2	3048	2743	1453	(3.00) 	<u>(20.39)</u> 535	610	
	(120.00)	(107 99)	(57 20)	(3.86)	(21.06)	(24 02)	
B1C1D1	3658	3353	1457	<u>(5.00)</u> 	521	610	
210101	(144.02)	(132.01)	(57,35)	(3.74)	(20.51)	(24,02)	
B1B1B1	3048	2743	1453	97	534	610	
	(120.00)	(107.99)	(57.22)	(3.82)	(21.02)	(24.02)	

* Designator corresponds to digits 6, 7, 14, 15, 21, 22 of model number

NOTICE:

- 1. Lifting cables (chains) will not be the same length. Adjust to keep unit level while lifting.
- 2. Attach anti-rolling cable (chain) as shown without tension. Not as a lifting cable, but to prevent unit from rolling.
- 3. Do not fork lift unit.
- 4. Weights are typical for units with r-134a charge.
- 5. If unit is disassembled, see service bulletin for lifting and rigging of components.

▲ WARNING

Do not use cables (chains) or slings except as shown.

Other lifting arrangements may cause equipment damage or serious personal injury.

4. Attach cables to lifting beam. Total lifting weight, lifting weight distribution and required lifting beam dimensions are shown in the rigging diagram shipped with each unit and in Figure 11. The lifting beam crossbar must be positioned so the lifting cables do not contact unit piping or electrical panel enclosure.

Anti- rotation Strap!

Connect an anti-rotation strap between the lifting beam and compressor before lifting unit. Failure to do so may result in death or serious injury should a lifting cable fail.

- 5. Connect an anti-rotation strap or cable loosely between the lifting beam and the threaded coupling or eyelet provided at the top of the compressor. Use an eyebolt or clevis to secure the strap at the coupling or eyelet.
- **Note:** The anti-rotation strap is not a lifting chain, but a safety device to ensure that the unit cannot tilt durina liftina.

Alternate Moving Method

6. If it is not possible to rig from above as shown in the figures, the unit may also be moved by jacking each end high enough to move an equipment dolly under each tube sheet support. Once securely mounted on the dollies, the unit may be rolled into position.

Isolation Pads

The elastomeric pads shipped (as standard) are adequate for most installations. For additional details on isolation practices, refer to Trane Engineering Bulletin -Series R® Chiller Sound Ratings and Installation Guide., or consult an acoustical engineer for sound-sensitive installations.

7. During final positioning of the unit, place the isolation pads under the evaporator and condenser tube sheet supports. Level the unit .

Placement Neoprene Isolator Installation (optional)

- 8. Install the optional neoprene isolators at each mounting location.
 - 8.1 Secure the isolators to the mounting surface, using the mounting slots in the isolator base plate, as shown as below. Do not fully tighten the isolator mounting bolts at this time.
 - 8.2 Align the mounting holes in the base of the unit, with the threaded positioning pins on the top of the isolators.
 - 8.3 Lower the unit on to the isolators and secure the isolator to the unit with a nut. Maximum isolator deflection should be approximately 1/4".
 - 8.4 Level the unit carefully. Refer to "Leveling". Fully tighten the isolator mounting bolts.
 - 8.5 Two Isolators for each foot, refer to Figure 12, total 8 isolators installed for one chiller.

- 9. The unit is shipped with four spacers (only one on B family) on the compressor mount that protect the compressor isolation pads during shipping and in handling. Remove these spacers (Figure 13) before the unit is operated.
- 10. Remove the shipping brackets from the bottom sides of the oil separator(s) (see Figure 13).
- **Note:** Once shipping bracket(s) is removed, the oil separator is only supported by the discharge line.

Figure 13. Oil Separator with Shipping Bracket and Compressor Shipping Spacer

Unit Leveling

Note: The electrical panel side of the unit is designated as the "front" of the unit.

- 1. Check unit level end-to-end by placing a level on the top surface of the evaporator shell.
- If there is insufficient surface available on the top of the evaporator shell, attach a magnetic level to the bottom of the shell to level the unit. The unit should be level to within 1/4" (6.35 mm) over its length.
- 3. Place the level on the evaporator shell tube sheet support to check sideto- side (front-to-back) level. Adjust to within 1/4" (6.35 mm) of level frontto- back.

Note: The evaporator MUST be level for optimum heat transfer and unit performance.

4. Use full-length shims to level the unit.

Water Piping

Piping Connections

Equipment Damage!

To prevent equipment damage, bypass the unit if using an acidic flushing agent.

Make water piping connections to the evaporator and condenser. Isolate and support piping to prevent stress on the unit. Construct piping according to local and national codes. Insulate and flush piping before connecting to unit.

Use grooved pipe connectors for all water piping connections. Evaporator and condenser water inlet and outlet sizes and locations are shown by the unit submittals and in Dimensions. The designation in the tables corresponds to the compressor frame code followed by the evaporator shell code followed by the condenser shell code as given in the unit model number, digits 6, 7, 14, 15, 21 and 22. Table 15 gives additional water connection information.

Reversing Water Boxes

All water boxes may be reversed end-for-end. Do not rotate water boxes. Remove the sensors from the wells before removing the water box. Complete the water box switch and replace the sensors. See Dimensions for correct orientation of the water inlet and outlet.

If the water boxes are reversed, be sure to properly rewire the water temperature sensors in the control panel.

Note: Be certain to replace water boxes right-side-up to maintain proper baffle orientation. Use new o-rings.

Dimensions

Space Layout

3 pass in Evap.

2(or 4) pass in Evap.

	Evano-							S	Size(m	m)							
Model	rator	Α	В	С	D	Е	F	G	Н	I	J	К	м	Ν	R	S	W
B1B1B1	3	3414	1785	2253/2053	3475	2743	2730	340	726	2734	2477	351	580	292	622	349	340
B1C1D1	3	3878	1785	2253/2053	3475	3200	3194	340	726	3198	2977	351	580	292	622	349	340
B2B2B2	3	3414	1785	2253/2053	3475	2743	2730	340	726	2734	2477	351	580	292	622	349	340
B2C2D2	3	3878	1785	2253/2053	3475	3200	3194	340	726	3198	2977	351	580	292	622	349	340
C1C2D2	3	3878	1850	2253/2053	3536	3200	3194	340	726	3198	2977	351	641	292	622	349	340
C1D6E5	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2977	378	503	318	692	358	400
C1D5E4	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2477	378	503	318	692	358	400
C1D3E3	4	3534	1867	2320/2120	3557	2743	2730	285	793	2734	2477	349	503	318	692	358	181
C1E1F1	3	3998	1867	2320/2120	3557	3200	3194	400	765	3198	2477	378	503	318	692	358	400
C2D4E4	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2997	378	503	318	692	358	400
C2D3E3	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2477	378	503	318	692	358	400
C2E1F1	4	3534	1867	2320/2120	3557	3200	3194	285	793	3198	2477	349	503	318	692	358	181
C2F2F3	3	3958	1867	2320/2120	3557	3200	3194	380	722	3198	2997	290	503	318	692	358	380
D1D1E1	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2477	378	503	318	692	358	400
D1F1F2	3	3958	1867	2320/2120	3557	3200	3194	380	722	3198	2997	290	503	318	692	358	380
D1G1G1	4	4012	1922	2418/2218	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
D2D2E2	3	3534	1867	2320/2120	3557	2743	2730	400	765	2734	2477	378	503	318	692	358	400
D2F2F3	3	3958	1867	2320/2120	3557	3200	3194	380	722	3198	2997	290	503	318	692	358	380
D2G2G1	4	4012	1922	2418/2218	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
D3D2E2	3	3534	1867	2320/2120	3557	2743	2730	260	765	2734	2477	378	503	318	692	358	260
D3F2F3	3	3958	1867	2320/2120	3557	3200	3194	380	722	3198	2997	290	503	318	692	358	380
D3G2G1	4	4012	1922	2418/2218	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
D3G3G3	4	4012	1895	2418/2218	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
E3F2F3	3	3958	1867	2320/2120	3557	3200	3194	380	722	3198	2997	290	503	318	692	358	380
E3G2G1	4	4012	1922	2418/2218	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
E3G3G3	4	4012	1922	2419/2219	3615	3302	3289	390	861	3198	3297	289	503	373	739	405	235
D4H1G4	3	4130	1898	2043	3615	3302	3289	393	830	3194	3289	310	473	373	701	401	393
D4H2G5	3	4130	1898	2043	3615	3302	3289	393	830	3194	3289	310	473	373	701	401	393
D4H3G6	3	4130	1898	2043	3615	3302	3289	393	830	3194	3289	310	473	373	701	401	393
D4H1G4	4	4133	1898	2043	3615	3302	3289	396	860	3194	3289	282	473	373	701	401	246
D4H2G5	4	4133	1898	2043	3615	3302	3289	396	860	3194	3289	282	473	373	701	401	246
D4H3G6	4	4133	1898	2043	3615	3302	3289	396	860	3194	3289	282	473	373	701	401	246
E3H3G3	3	4133	1922	2175	3615	3302	3289	396	860	3194	3289	282	473	373	701	401	246

Note: C-height of the unit left is 460V/60HZ, right is 50HZ and 380V/60HZ.

Compress or Frame Code (Digit 6,7	Evap Shell Code (Digits	Evap. Shell	Nominal size (NP	Connecto S)*	r	Cond Shell Code (Digits 21,22	Cond. Shell	Nom. Conn. Size (NPS)*
of Model	14, 15 of	Diameter	2-	3-	4-	of	Diameter	
No.)	Model No.)	(in)	Pass	Pass	Pass	Model No.)	(in)	2-Pass
D4	H1	33.5	-	10	8	G4	25.75	8
	H2	33.5	-	10	8	G5	25.75	8
	H3	33.5	-	10	8	G6	25.75	8
E3	D2	26.5	8	8	6	E2	22.0	8
	F2	29.0	8	8	-	E2	22.0	8
	G2	33.5	-	10	8	G1	25.75	8
	H3	33.5	-	10	8	G3	25.7	8
D3	D2	26.5	8	8	6	E2	22.0	8
	F2	29.0	10	8	-	F3	22.0	8
	G2	33.5	-	10	8	G1	25.75	8
	G3	33.5	-	10	8	G3	25.75	8
D2	G3	33.5	-	10	8	G3	25.75	8
	D2	26.5	8	8	6	E2	22.0	8
	F2	29.0	10	8	-	F3	22.0	8
	G2	33.5	-	10	8	G1	25.75	8
D1	D1	26.5	8	8	6	E1	22.0	8
	F1	29.0	10	8	-	F2	22.0	8
	G1	33.5	-	10	8	G1	25.75	8
C2	D3	26.5	8	8	6	E3	22.0	8
	D4	26.5	8	8	6	E4	22.0	8
	E1	26.5	8	8	6	F1	22.0	8
	F2	29.0	10	8	-	F3	22.0	8
C1	D6	26.5	8	8	6	E5	22.0	8
	D5	26.5	8	8	6	E4	22.0	8
	D3	26.5	8	8	6	E3	22.0	8
	E1	26.5	8	8	6	F1	22.0	8
	C2	23.0	8	6	-	D2	18.75	6
B2	C2	23.0	8	6	-	D2	18.75	6
	B2	23.0	8	6	-	B2	18.75	6
B1	C1	23.0	8	6	-	D1	18.75	6
	B1	23.0	8	6	-	B1	18.75	6

Table 15. Evaporator and Condenser Data

Metric Conversion is:

6 NPS = 150 mm nominal 8 NPS = 200 mm nominal 10 NPS = 250 mm nominal

Water Pressure Drop Data

Evaporator Pressure Drop

Making Grooved Pipe Connections

Equipment Damage!

To prevent damage to water piping, do not overtighten connections. To prevent equipment damage, bypass the unit if using an acidic flushing agent.

Note: Make sure that all piping is flushed and cleaned prior to starting the unit.

Vents and Drains

Install pipe plugs in evaporator and condenser water box drain and vent connections before filling the water systems.

To drain water, remove vent and drain plugs, install a NPT connector in the drain connection with a shutoff valve and connect a hose to it.

Evaporator Piping Components

Note: Make sure all piping components are between the shutoff valves, so that isolation can be accomplished on both the condenser and the evaporator.

"Piping components" include all devices and controls used to provide proper water system operation and unit operating safety. These components and their general locations are given below.

Entering Chilled Water Piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Pipe unions
- Vibration eliminators (rubber boots)
- Shutoff (isolation) valves
- Thermometers
- Cleanout tees
- Pipe strainer

Leaving Chilled Water Piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Pipe unions
- Vibration eliminators (rubber boots)
- Shutoff (isolation) valves
- Thermometers
- Cleanout tees
- Balancing valve
- Pressure relief valve
- Flow switch

Evaporator Damage!

To prevent evaporator damage, do not exceed 150 psig (10.3 bar) evaporator water pressure for standard water boxes. Maximum pressure for high pressure water boxes is 300 psig (20.7 bar). Refer to digit 14 of the Model No. To prevent tube damage, install a strainer in the evaporator water inlet piping. To prevent tube corrosion, ensure that the initial water fill has a balanced pH.

Condenser Piping Components

"Piping components" include all devices and controls used to provide proper water system operation and unit operating safety. These components and their general locations are given below.

Entering condenser water piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Pipe unions
- Vibration eliminators (rubber boots)
- Shutoff (isolation) valves. One per each pass
- Thermometers
- Cleanout tees
- Pipe strainer

Leaving condenser water piping

- Air vents (to bleed air from system)
- Water pressure gauges with shutoff valves
- Pipe unions
- Vibration eliminators (rubber boots)
- Shutoff (isolation) valve one per each pass
- Thermometers
- Cleanout tees
- Balancing valve
- Pressure relief valve.
- Flow switch

▲ CAUTION

Condenser Damage!

To prevent condenser damage, do not exceed 150 psig (10.3 bar) water pressure for standard water boxes. Maximum pressure for high pressure water boxes is 300 psig (20.7 bar). Refer to digit 18 of the Model No. To prevent tube damage, install a strainer in condenser water inlet piping. To prevent tube corrosion, ensure that the initial water fill has a balanced pH.

Condenser Water Regulating Valve

The Condenser Head Pressure Control Option provides for a 0-10VDC (maximum range - a smaller range is adjustable) output interface to the customer's condenser water flow device. The condenser water flow device is typically a large butterfly type (6" or 8") automatic valve for 200 to 400 Ton chillers.

The following guidelines must be met in order to ensure adequate oil circulation throughout the system.

- The AdaptiR[™] with AFD option must maintain a 23 psid system pressure differential at all load conditions in order to ensure adequate oil circulation.
- The entering condenser water temperature must be above 55°F (12.8°C) or between 45°F (7.2°C) and 55°F (12.8°C) with a 1°F temperature rise per minute to 55°F (12.8°C).
- Condenser leaving water temperature must be 17°F degrees higher than evaporator leaving water temperature within 2 minutes of startup. A 25°F differential must be maintained thereafter.

If the above guidelines cannot be met, then some form of tower water control must be used.

Condenser Water Regulating Valve Adjustment

A separate Tracer TU Settings Menu tab entitled "Condenser Head Pressure Control - Setup" that is only visible if the configuration is selected, contain the following settings and manual overrides for user adjustments and commissioning all under one tab:

- "Off State" Output Command (0-10 Vdc 0.1 volt increments, Default 2.0 Vdc)
- Output Voltage @ Desired Minimum Flow (Adj: 0 to 10.0 in 0.1 volt increments, Default 2.0 Vdc)
- Desired Minimum Flow (Adj: 0- 100% of full flow in 1% intervals, Default 20%)
- Output Voltage @ Desired Maximum Flow (Adj: 0 to 10.0 in .1 volt increments (or finer), Default 10 Vdc)
- Actuator Stroke Time (Min to Max Range Time) (Adj: 1 to 1000 seconds, in 1 second increments, Default 30s)
- Damping Coefficient (adj: 0.1 to 1.8, in .1 increments, Default .5)
- Head Pressure Control Override (enumeration of: disabled (auto), "off" state, minimum, maximum (100%),) default :disabled (auto). When this setting is in "disabled (auto)"
- Condenser Water Pump Prerun Time

Water Treatment

Proper Water Treatment!

The use of untreated or improperly treated water in a AdaptiR[™] with AFD option may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. The Trane Company assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

Using untreated or improperly treated water in these units may result in inefficient operation and possible tube damage. Consult a qualified water treatment specialist to determine whether treatment is needed.

Water Pressure Gauges and Thermometers

Install field-supplied thermometers and pressure gauges (with manifolds, whenever practical) as shown in Figure 14. Locate pressure gauges or taps in a straight run of pipe; avoid placement near elbows, etc. Be sure to install the gauges at the same elevation on each shell if the shells have opposite-end water connections.

To read manifolded water pressure gauges, open one valve and close the other (depending upon the reading desired). This eliminates errors resulting from differently calibrated gauges installed at unmatched elevations.

Figure 14. Typical Thermometer, Valving, and Manifold Pressure Gauge Set-up

Refer to *Trane Engineering Bulletin RTHD with Standard AFD Option Water- Cooled Series R[®] Chillers Sound Ratings and Installation Guide* for sound-sensitive applications.

Water Pressure Relief Valves

Shell Damage!

Install a pressure relief valve in both evaporator and condenser water systems. Failure to do so may result in shell damage.

A CAUTION

Install a water pressure relief valve in one of the condenser and one of the evaporator water box drain connections or on the shell side of any shutoff valve. Water vessels with close-coupled shutoff valves have a high potential for hydrostatic pressure buildup on a water temperature increase. Refer to applicable codes for relief valve installation guidelines.

Flow Sensing Devices

The installer must provide flow switches or differential pressure switches with pump interlocks to sense system water flow. Flow switch locations are schematically shown in Figure 14.

To provide chiller protection, install and wire flow switches in series with the water pump interlocks, for both chilled water and condenser water circuits (refer to the Installation Electrical section). Specific connections and schematic wiring diagrams are shipped with the unit.

Flow switches must stop or prevent compressor operation if either system water flow drops off below the required minimum shown on the pressure drop curves. Follow the manufacturer's recommendations for selection and installation procedures. General guidelines for flow switch installation are outlined below.

- Mount the switch upright, with a minimum of 5 pipe diameters straight, horizontal run on each side.
- Do not install close to elbows, orifices or valves.

Note: The arrow on the switch must point in the direction of the water flow.

- To prevent switch fluttering, remove all air from the water system.
- **Note:** The Symbio800 provides a 6-second time delay on the flow switch input before shutting down the unit on a loss-of-flow diagnostic. Contact a qualified service organization if nuisance machine shutdowns persist.
- Adjust the switch to open when water flow falls below nominal. Refer to the General Data table in Section 1 for minimum flow recommendations for specific water pass arrangements. Flow switch contacts are closed on proof of water flow.

For the thermal flow switch, the specific installation and maintenance requirements can be found in the thermal flow switch instructions, which is attached with the unit.

Refrigerant Pressure Relief Valve Venting

Hazardous Gases!

Consult local regulations for any special relief line requirements. Refrigerant vented into a confined equipment room could displace available oxygen to breathe, causing possible asphyxiation or other serious health risks. Failure to follow these recommendations could result in death or serious injury.

Note: Vent pipe size must conform to the ANSI/ASHRAE Standard 15 for vent pipe sizing. All federal, state, and local codes take precedence over any suggestions stated in this manual.

All relief valve venting is the responsibility of the installing contractor.

All AdaptiR[™] with AFD option units use evaporator, compressor, and condenser pressure relief valves (Figure 15) that must be vented to the outside of the building.

Relief valve connection sizes and locations are shown in the unit submittals. Refer to local codes for relief valve vent line sizing information.

Equipment Damage!

Do not exceed vent piping code specifications. Failure to comply with specifications may result in capacity reduction, unit damage and/or relief valve damage.

Relief valve discharge setpoints and capacities rates are given in Table 16. Once the relief valve has opened, it will reclose when pressure is reduced to a safe level.

Note: Once opened, relief valves may have tendency to leak and must be replaced.

Figure 15. Relief Valve Location

Pressure relief valve discharge capacities will vary with shell diameter and length and also compressor displacement. Discharge venting capacity should be calculated as required by ASHRAE Standard 15-94. Do not adjust relief valve setting in the field.

Valve Location	Discharge Setpoint (psi)	Number of Valves	Rated Capacity per Relief Valve (lb/min.)	Field Connection Pipe Size (in NPT)	Factory Shell Side Connection(in)
Evap - B1	200	2	48.0	1	1-5/16-12
Evap - B2	200	2	48.0	1	1-5/16-12
Evap - C1	200	2	48.0	1	1-5/16-12
Evap - C2	200	2	48.0	1	1-5/16-12
Evap - D1	200	2	48.0	1	1-5/16-12
Evap - D2	200	2	48.0	1	1-5/16-12
Evap - D3	200	2	48.0	1	1-5/16-12
Evap - D4	200	2	48.0	1	1-5/16-12
Evap - D5	200	2	48.0	1	1-5/16-12
Evap - D6	200	2	48.0	1	1-5/16-12
Evap - E1	200	2	48.0	1	1-5/16-12
Evap - F1	200	2	48.0	1	1-5/16-12
Evap - F2	200	2	48.0	1	1-5/16-12
Evap - G1	200	2	78.8	1-1/4	1-5/8-12
Evap - G2	200	2	78.8	1-1/4	1-5/8-12
Evap - G3	200	2	78.8	1-1/4	1-5/8-12
Evap - H1	200	2	78.8	1-1/4	1-5/8-12
Evap - H2	200	2	78.8	1-1/4	1-5/8-12
Evap - H3	200	2	78.8	1-1/4	1-5/8-12
Cond - B1	200	2	48.0	1	1-5/16-12
Cond - B2	200	2	48.0	1	1-5/16-12
Cond - D1	200	2	48.0	1	1-5/16-12
Cond - D2	200	2	48.0	1	1-5/16-12
Cond - E1	200	2	48.0	1	1-5/16-12
Cond - E2	200	2	48.0	1	1-5/16-12
Cond - E3	200	2	48.0	1	1-5/16-12
Cond - E4	200	2	48.0	1	1-5/16-12
Cond - E5	200	2	48.0	1	1-5/16-12
Cond - F1	200	2	48.0	1	1-5/16-12
Cond - F2	200	2	48.0	1	1-5/16-12
Cond - F3	200	2	48.0	1	1-5/16-12
Cond - G1	200	2	48.0	1	1-5/16-12
Cond - G2	200	2	48.0	1	1-5/16-12
Cond - G3	200	2	48.0	1	1-5/16-12
Cond - G4	200	2	48.0	1	1-5/16-12
Cond - G5	200	2	48.0	1	1-5/16-12
Cond - G6	200	2	48.0	1	1-5/16-12
Cond - H1	200	2	48.0	1	1-5/16-12
Cond - H2	200	2	48.0	1	1-5/16-12
Cond - J1	200	2	48.0	1	1-5/16-12
Cond - J2	200	2	48.0	1	1-5/16-12
Cond - J3	200	2	48.0	1	1-5/16-12
Cond - K1	200	2	48.0	1	1-5/16-12
Cond - L1	200	2	48.0	1	1-5/16-12
Cond - L2	200	2	48.0	1	1-5/16-12
Cond - M1	200	2	48.0	1	1-5/16-12
Cond - M2	200	2	48.0	1	1-5/16-12
Cond - M3	200	2	48.0	1	1-5/16-12
Cond - N1	200	2	48.0	1	1-5/16-12
Comp - B1/B2*	200	1	/	5/8-18 UNF-2A	1/4-18
Comp - C1/C2*	200	2	/	5/8-18 UNF-2A	1/4-18
Comp - D1/D2/D3/D4*	200	2	/	5/8-18 UNF-2A	1/4-18
Comp -E3*	200	2	/	5/8-18 UNF-2A	1/4-18
Comp - B1/B2**	200	2	78.8	1-1/4	1-5/8-12
Comp - C1/C2**	200	3	78.8	1-1/4	1-5/8-12
Comp - D1/D2/D3/D4**	200	3	78.8	1-1/4	1-5/8-12
Comp -E3**	200	3	78.8	1-1/4	1-5/8-12

Table 16. Pressure Relief Valve Data

* GB, located on oil seperator, only used with isolation valve option; ** ASME, located on discharge line, only used with isolation valve option.

Thermal Insulation

All AdaptiR[™] with AFD option units are available with optional factory installed thermal insulation. If the unit is not factory insulated, install insulation over the areas shaded in Figure 16. Refer to Table 17 for types and quantities of insulation required.

Insulation thickness is determined at normal design conditions which are:

• Standrad comfort-cooling leaving chilled water temperature

- 85°F Dry bulb ambient temperature
- 75% Relative humidity

Operation outside of normal design conditions as defined above may require additional insulation; contact Trane for further review.

- **Note:** Liquid line filter, refrigerant charging valves, water temperature sensors, drain and vent connections when insulated must remain accessible for service.
- **Note:** Use only water-base latex paint on factory-applied insulation. Failure to do so may result in insulation shrinkage.
- **Note:** Units in environments with higher humidity or very low leaving water temperature may require thicker insulation

Figure 16. Typical AdaptiR[™] with AFD option Insulation Requirements

Table 17. Recommended Insulation Types

Location	Туре	Sq. Feet
Evaporator	3/4" wall	90
Compressor	3/4" wall	25
All components and piping on low side of system and oil return system.	3/4" wall	160

Waterbox Removal and Installation

Introduction

The purpose of this bulletin is to communicate waterbox weights, recommended connection devices, and connection and lifting arrangements for Adapti R^{TM} with AFD option water cooled chillers.

Important

Only qualified technicians should perform the installation and servicing of equipment referred to this bulletin.

ATTENTION: Warnings, Cautions and Notices appear at appropriate sections throughout this literature. Read these carefully:

A WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

▲ CAUTION Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

NOTICE: Indicates a situation that could result in equipment or property-damage only

Discussion

This bulletin will discuss recommended hoist ring/clevises and lifting. Proper lifting technique will vary based on mechanical room layout.

- It is the responsibility of the person(s) performing the work to be properly trained in the safe practice of rigging, lifting, securing, and fastening the of water box.
- It is the responsibility of the person(s) providing and using the rigging and lifting devices to
 inspect these devices to insure they are free from defect and are rated to meet or exceed the
 published weight of the waterbox.
- Always use rigging and lifting devices in accordance with the applicable instructions for such device.

Procedure

Heavy Objects!

Each of the individual cables (chains or slings) used to lift the waterbox must be capable of supporting the entire weight of the waterbox. The cables (chains or slings) must be rated for overhead lifting applications with an acceptable working load limit. Failure to properly lift waterbox could result in death or serious injury.

Eyebolts!

The proper use and ratings for eyebolts can be found in ANSI/ASME standard B18.15 Maximum load rating for eyebolts are based on a straight vertical lift in a gradually increasing manner. Angular lifts will significantly lower maximum loads and should be avoided whenever possible. Loads should always be applied to eyebolts in the plane of the eye, not at some angle to this plane. Failure to properly lift waterbox could result in death or serious injury.

Review mechanical room limitations and determine the safest method or methods of rigging and lifting the waterboxes.

Waterbox Removal and Installation

- 1. Determine the type and size of chiller being serviced. Refer to Trane Nameplate located on chiller control panel.
- 2. Select the proper lift connection device from Table 19. The rated lifting capacity of the selected lift connection device must meet or exceed the published weight of the waterbox.
- 3. Insure the lift connection device has the correct connection for the waterbox. Example: thread type (coarse/fine, English/metric). Bolt diameter (English/metric).
- 4. Properly connect the lift connection device to the waterbox. Refer to Figure 17. Insure lift connection device is securely fastened Install hoist ring on to the lifting connection on the waterbox. Torque to 37Nm (28 ft-lbs) for M12 x1.75 (mm) threaded connection.
- 5. Disconnect water pipes, if connected.
- 6. Remove waterbox bolts.
- 7. Lift the waterbox away from the shell.

Figure 17. Water Box Rigging and Lifting – Vertical Lift Only

- 1 = Cables, chains or slings
- 2 = Eyebolt connection (See figure 2)
- 3 = Waterbox
- 4 = Factory welded connection device

OVERHEAD HAZARD!

Never stand below or in close proximately to heavy objects while they are suspended from, or being lifted by, a lifting device. Failure to follow these instructions could result in death or serious injuries.

8. Store waterbox in a safe and secure location and position. **Do not leave waterbox suspended from lifting device.**

Reassembly

Once service is complete the waterbox should be reinstalled on the shell following all previous procedures in reverse. Use new o-rings or gaskets on all joints after thoroughly cleaning each joint.

 Torque waterbox bolts. Torque bolts in a star pattern. Refer to Table 18 for torque values.

Table 18. AdaptiR[™] with AFD option Torque

Waterbox Removal and Installation

Unit	Bolt Size (mm)	Evaporator	Condenser	
RTHD	M12x1.75	88 Nm (65 ft-lbs)	88 Nm (65 ft-lbs)	

Parts Ordering Information

This Bulletin is informational only and does not authorize any parts or labor.

Use the Table 19 for part ordering information.

Table 19. Connection Devices

Unit	Product	Rated Capacity	Part Number
RTHD	Safety Hoist Ring M12X1.75	674 Kg	RNG00003C (See Figure 18)

Figure 18. Eyebolt connection (Safety hoist ring M12X1.75)

The modification shown in Figure 18 must be complete prior to using the hoist ring to lift the waterbox. Failure to make these modification could result in death or serious injuries.

The length of the standard hoist ring bolt must be shortened (modified) prior to use for lifting waterboxes. Shorting of the bolt as instructed will help insure the base of the hoist right is flat against the waterbox when properly seated. If bases of hoist is not properly seated against waterbox side loading on the bolt may occur which could lead to bolt failure.

Filter Panel Lifting

Filter use single point lifting or two points lifting, Figure 19 shows the single point lifting example. The angle from the top two diagonal bolts of the filter panel to the lifting cables should be 60° or greater (see Figure 20/Figure 21, Single: 285 Kg, Double: 530 Kg).

Figure 19. Single Point Lifting

Filter Shipment

Filter is shipped separately fixed on wooden box. Wirings for filter shipping will be in same package of filter. And installation guide file enclosed the box.

Filter Installation on Site

Mechanical Assembly

Step 1. Check all accessories according to the enclosed list.

Step 2. Confirm two U supports are fixed on brackets welded on the condenser with bolts. (See Figure 22)

Step 3. Lift filter panel by top four eyebolts (Refer to Filter Panel Lifting).

Step 4. Fix filter panel to the U supports by six bolts. Mount bolts from U support side into the filter panel directly. (See Figure 22)

Step 5. Install the cable guider on the oil sump by a pair of clamp with 8 bolts. (See Figure 22)

Electrical Wiring Connection

TL300/TL330 has low harmonic option design with passive filter. Chiller can reach to 5% THDi with filter option under full load condition. There is a filter panel design to cover 1~2 filters and other related control parts. Because filter panel has large size, it is separated sipping and field installed. Check wiring parts list and follow below instruction for field connection.

Two sets of power cables and one set of control harness will route from control panel to filter panel, and be tied along with bracket (See Figure 23 for cable routing)

Check Table 20 for recommended wiring torgue

Single Filter Power Connection (Standard AFD chiller)

For TL300 Size 110KW~220KW, it only has one filter.

Power cable harness from control panel to filter panel (see Figure 24):

Table 20. Recommended wiring torgue

Screw Type	Torgue (N.m)
M8	10~12
M10	20~25
M12	36~45

Figure 23. Cables routing

Figure 24. Power Cable Routing With Single Filter Panel

Two Filters Power Connection (Standard AFD chiller)

For TL300 size 200KW~315KW, it has two filters.

Power cable harness between Filter panel and control panel (See Figure 25):

Figure 25. Power Cable Routing With Double Filter Panel

Two Filters Power Connection (VVI chiller)

For TL330 size 250KW~315KW, it has two filters.

Power cable harness between control panel and filter panel (See Figure 26):

Figure 26. Power Cable Routing With Double Filter Panel

Filter Control Harness Connection (Standard AFD chiller)

Filter control harness from control panel to filter panel includes four wires with conduit (see Table 21 and Figure 27 for single filter, see Table 22 and Figure 28 for double filter):

Table 21. Control wiring from control panel to filter panel (single filter)

Cable P/N	Drive Size	Filter Size	Label	From	То	
573165760100	All	All	82B	1X4-1	2U4-TS	
			83B	1X4-2	2U4-TS'	
			93B	1X4-3	2K1-A1	
			27AA	1X4-4	2K1-A2	

Figure 27. Control cable routing with single filter

Table 22.	Control	wiring	from	control	nanel to	filter	panel	(Double	filters)
TUDIC 22.	00111101	winnig	nom	00110101	punci to	much	punci	Double	meers

Cable P/N	Drive Size	Filter Size	Label	From	То	
573165760100	All	All	82B	1X4-1	2U4-TS	
			83B	1X4-2	2U5-TS'	
			93B	1X4-3	2K1-A1	
			27AA	1X4-4	2K1-A2	

Figure 28. Control cable routing with double filters

Filter Panel Construction

Below picture show different panel constructions based on different power size:

Filter Panel Maintenance

It is recommended to check the functionally at least in a 2 year interval.

- 2. Check the fan(s) inside filter panle is (are) at the normal operation.
- 3. Check the "error" red indicator in the intern filter is not bright.

Figure 30. Filter Panel for 250KW~315KW Drive

Installation Electrical

We ship some unit with the fan chamber installed on the side of the panel to ensure can put the unit in the standard container. We install the protect sheet metal on the air outlet to ensure no other things drop into the panel.

During installation, Please remove the protect sheet metal away and install the fan chamber to the air outlet of the panel, without doing this will damage the starter.

Please ensure the fan chamber install as below and the protect sheet metal have already moved Away, before run the unit.

General Recommendations

For proper electrical component operation, do not locate the unit in areas exposed to dust, dirt, corrosive fumes, or excessive humidity. If any of these conditions exist, corrective action must be taken.

Hazardous Voltage!

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. Verify with an appropriate voltmeter that all capacitors have discharged. Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

All wiring must comply with local and National Electric Codes. Minimum circuit ampacities and other unit electrical data is on the unit nameplate. See the unit order specifications for actual electrical data. Specific electrical schematics and connection diagrams are shipped with the unit.

Typical wiring diagrams are in the back of this manual.

▲ CAUTION

Use Copper Conductors Only!

Unit terminals are not designed to accept other types of conductors. Failure to use copper conductors may result in equipment damage.

Do not allow conduit to interfere with other components, structural members or equipment. All conduit must be long enough to allow compressor and starter removal.

Note: To prevent control malfunctions, do not run low voltage wiring (<30V) in conduit with conductors carrying more than 30 volts.

Power Supply Wiring

Model AdaptiR[™] with AFD option chillers are designed according to NEC Article 310-15; therefore, all power supply wiring must be sized and selected accordingly by the project engineer.

For a complete discussion on the use of conductors, see Trane Engineering Bulletin EB-MSCR-40.

Refer to Trane Engineering Bulletin CTV-EB-93 for power wire sizing.

Water Pump Power Supply

Provide power supply wiring with fused disconnect for both the chilled water and condenser water pumps.

Electrical Panel Power Supply

Power supply wiring instructions for the starter/control panel are:

4. Run line voltage wiring in conduit to access opening(s) on starter/control panel or pull-box. See CTV-EB-93 for wire sizing and selection information and refer to Table 23 that show typical electrical connection sizes and locations. Always refer to submittal information for your actual unit specifications.

Min. Wire	Supply Leads for All Starters (0 - 2000 Volts)									
Size Copper (75°C)	1 Conduit 3 Wire	1 Conduit 6 Wire	1 Conduit 9 Wire	2 Conduit 6 Wire	2 Conduit 12 Wire	3 Conduit 9 Wire	4 Conduit 12 Wire			
8	40	*	*	*	*	*	*			
6	52	*	*	*	*	*	*			
4	68	*	*	*	*	*	*			
3	60	*	*	*	*	*	*			
2	92	*	*	*	*	*	*			
1	104	*	*	*	*	*	*			
0	120	192	252	360	384	360	480			
00	140	224	294	420	448	420	560			
000	160	256	336	480	512	480	640			
0000	184	294	386	552	589	552	736			
250	204	326	428	612	653	612	816			
300	228	356	479	684	730	684	912			
350	248	397	521	744	794	744	992			
400	268	429	563	804	858	804	1072			
500	304	486	638	912	973	912	1216			

Table 23. Wire Selection Chart for Starter Panels

Conductors to the starter and motor connected in parallel (electrically joined at both ends to form a single conductor) must be sized 0 (1/0) or larger per NEC 310-4. Each phase must be equally represented in each conduit.

Figure 31. Electrical Installation

Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

Circuit Breakers

Units that are ordered with factory installed Circuit Breakers ship with the handle in the control panel. The handle must be installed prior to starting the unit.

The operating mechanism is already pre installed on Circuit Breaker frame.

The hole locations and shafts lengths have already been cut. And the shaft already installed.

A WARNING

Hazardous Voltage!

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. Verify with an appropriate voltmeter that all capacitors have discharged. Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Fused Disconnect Switches

Size fused disconnects in accordance with NEC Article 440-22(a).

Rated Load Amperage (RLA)

The compressor motor RLA for a particular chiller is determined by the field selection program and indicated on the compressor nameplate.

Minimum Circuit Ampacity (MCA)

The MCA is equal to 1.25 x Drive input Current.

Maximum Fuse/Circuit Breaker Size

The maximum fuse/circuit breaker size is equal to 2.25 x Drive input Current in accordance with UL 1995, para. 36.15.See also NEC 440-22.

The recommended dual element (RDE) fuse size is equal to 1.75 x Drive input Current in accordance with NEC Table 430-152.

Electrical Shock!

Contacting any of the motor terminals, even with the motor off can cause a severe, potentially fatal, shock. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

NOTICE:

MPORTANT!

WHEN EVACUATING THE CHILLER'S REFRIGERANT SYSTEM, ALWAYS HAVE THE MAIN POW-ER DISCONNECT/CIRCUIT BREAKER OPENED.

Even when the compressor is not running, voltage is present at the compressor motor terminals, providing the potential for current to flow through a low impedance path.

When removing refrigerant for the chiller both the condenser and chilled water pump must be operating to avoid freeze up.

Module Connections for Interconnecting Wiring

All connectors can be unplugged or the wires can be removed from the screw assembly. If an entire plug is removed, make sure the plug and the associated jack are marked for proper location identification during reinstallation.

Equipment Damage!

Plugs and jacks must be clearly marked before disconnecting, because specific plugs will fit into other jacks. Possible damage to equipment may occur if the plugs are reversed with the jacks.
Interconnecting Wiring (Field Wiring Required)

Important: Do not turn chiller on or off using the chilled water pump interlocks.

When making field connections, refer to the appropriate field layout, wiring, schematics and controls diagrams that ship with the unit. The diagrams in this manual are typical only and may not match the unit.

Whenever a contact closure (binary output) is referenced, the electrical rating is:

At 120 VAC	7.2 amp resistive
	2.88 amp pilot duty
	1/3 hp, 7.2 FLA, 43.2 LRA
At 240 VAC	5.0 amp resistive
	2.0 amp pilot duty
	1/3 hp, 3.6 FLA, 21.6 LRA

Whenever a dry contact input (binary input) is referenced, the electrical rating is 24VDC, 12 mA.

Whenever a control voltage contact input (binary input) is referenced, the electrical rating is 120 VAC, 5mA.

Note: Asterisked connections require the user to provide an external source of power. The 115V control power transformer is not sized for additional load.

Chilled Water Pump Control

Symbio800 has a evaporator water pump output relay that closes when the chiller is given a signal to go into the Auto mode of operation from any source. The contact is opened to turn off the pump in the event of most machine level diagnostics to prevent the build up of pump heat. To protect against the build-up of pump heat for those diagnostics that do not stop and/or start the pump and to protect against the condition of a bad flow switch, the pump shall always be stopped when the evaporator pressure is seen to be close to the Low Side Evaporator Pressure relief valve setting.

Chilled Water Flow Interlock

Symbio800 has an input that will accept a contact closure from a proof-of-flow device such as a flow switch. The flow switch is to be wired in series with the chilled water pump starter's auxiliary contacts. When this input does not prove flow within 20 minutes relative to transition from Stop to Auto modes of the chiller, or if the flow is lost while the chiller is in the Auto mode of operation, the chiller will be inhibited from running by a non-latching diagnostic. The flow switch input shall be filtered to allow for momentary openings and closings of the switch due to turbulent water flow. This is accomplished with a 6 seconds filtering time. The sensing voltage for the condenser water flow switch is 115/240 VAC.

IMPORTANT! DO NOT cycle the chiller through starting and stopping the chilled water pump. This could cause the compressor to shut down fully loaded. Use the external stop/start input to cycle the chiller.

Condenser Water Pump Control

Symbio800 provides a contact closure output to start and stop the condenser water pump. If condenser pumps are arranged in a bank with a common header, the output can be used to control an isolation valve and/or signal another device that an additional pump is required.

Condenser Water Pump Prestart time has been added to help with cold condenser water problems. In very cold outdoor ambients, the cooling towers sump cold water would reach the chiller some time after the low system differential pressure protection had run through its ignore time, and result in an immediate shutdown and latching diagnostic. By simply starting the pump earlier, and allowing mixing of the warmer indoor loop with the cooling tower's sump, this problem can be avoided.

Condenser Water Flow Interlock

The Symbio800 shall accept an isolated contact closure input from a customer installed proofof-flow device such as a flow switch and customer provided pump starter auxiliary contact for interlocking with condenser water flow. The input shall be filtered to allow momentary openings and closings of the switch due to turbulent water flow, etc. This shall be accomplished with a 6 seconds filtering time. The sensing voltage for the condenser water flow switch is 115/240 VAC.

On a call for cooling after the restart inhibit timer has timed out, the Symbio800 shall energize the condenser water pump relay and then check the condenser water flow switch and pump starter interlock input for flow confirmation. Startup of the compressor will not be allowed until flow has proven.

If flow is not initially established within 1200 seconds (20 minutes) of the condenser pump relay energizing, an automatically resetting diagnostic "Condenser Water Flow Overdue" shall be generated which terminates the prestart mode and de-energizes the condenser water pump relay This diagnostic is automatically reset if flow is established at any later time.

Note: This diagnostic would never automatically reset if Symbio800 was in control of the condenser pump through its condenser pump relay since it is commanded off at the time of the diagnostic. It could however reset and allow normal chiller operation if the pump was controlled from some external source.

Chilled Water Reset (CWR)

The MP will reset the chilled water temperature setpoint based on either return water temperature, or outdoor air temperature. The Return Reset option is standard, Outdoor Reset is optional.

The following is selectable:

- RESET TYPE Setpoint.
 This can be set to: NO CWR, OUTDOOR AIR TEMPERATURE RESET, RETURN WATER TEM-PERATURE RESET, or CONSTANT RETURN WATER TEMPERATURE RESET. The MP shall not
 - permit more than one type of reset to be selected.RESET RATIO Setpoints.
 - For outdoor air temp. reset, both positive and negative reset ratios will be allowed.
 - START RESET Setpoints.
 - MAXIMUM RESET Setpoints. The maximum resets shall be with respect to the chilled water setpoint.

When the chiller is running, if any type of CWR is enabled, the MP will step the CWS toward the desired CWS' (based on the below equations and setup parameters) at a rate of 1 degree F every 5 minutes until the Active CWS equals the desired CWS'. When the chiller is not running the CWS will be fully reset immediately (within one minute). The chiller will then start at the Differential to Start value above a fully reset CWS or CWS' for Outdoor, Return, and Constant Return Reset.

Equations for calculating CWR

Equation used to get Degrees of Reset:

Outdoor Air:

Degrees of Reset = Reset Ratio * (Start Reset - TOD)

Return Reset:

Degrees of Reset = Reset Ratio * (Start Reset - (TWE - TWL))

Constant Return:

Degrees of Reset = 100% * (Design Delta Temp - (TWE - TWL)) To obtain Active CWS from Degrees of Reset:

Active CWS = Degrees of Reset + Previous CWS

Note: Previous CWS can either be Front Panel, BAS, or External

Reset Ratio calculation:

The Reset Ratio on the User Interface is displayed as a percentage. To use it in the above equation it must be converted to its decimal form.

Reset Ratio percent / 100 = Reset Ratio decimal

Example of converting Reset Ratio:

If the Reset Ratio displayed on the User Interface is 50% then use (50/100) = .5 in the equation

TOD = Outdoor Air Temp

TWE = Evap Entering Water Temp

TWL = Evap Leaving Water Temp

Programmable Relays (Alarm and Status) - Optional

Symbio800 provides a flexible alarm or chiller status indication to a remote location through a hard wired interface to a dry contact closure. Four relays are available for this function, and they are provided (generally with a Quad Relay Output LLID) as part of the Alarm Relay Output Option.

The events/states that can be assigned to the programmable relays are listed in the following table.

Table 24. Chiller	Events/Status	Descriptions
-------------------	----------------------	--------------

Event/State	Description
Alarm - Latching	This output is true whenever there is any active diagnostic that requires a manual reset to clear, that effects the Chiller, the Circuit, or any of the Compressors on a circuit. This classification does not include informational diagnostics.
Alarm - Auto Reset	This output is true whenever there is any active diagnostic that could automatically clear, that effects the Chiller, the Circuit, or any of the Compressors on a circuit. This classification does not include informational diagnostics. If all of the auto resetting diagnostics were to clear, this output would return to a false condition.
Alarm	This output is true whenever there is any diagnostic effecting any component, whether latching or automatically clearing. This classification does not include infor- mational diagnostics.
Warning	This output is true whenever there is any informational diagnostic effecting any component, whether latching or automatically clearing.
Chiller Limit Mode	This output is true whenever the chiller has been running in one of the Unloading types of limit modes (Condenser, Evaporator, Current Limit or Phase Imbalance Lim- it) continuously for the last 20 minutes. A given limit or overlapping of different lim- its must be in effect continuously for 20 minutes prior to the output becoming true. It will become false, if no Unload limits are present for 1 minute. The filter prevents short duration or transient repetitive limits from indicating. The chiller is considered to be in a limit mode for the purposes of front panel display and annunciation, only if it is fully inhibiting loading by virtue of being in either the "hold" or "forced unload" regions of the limit control, excluding the "limited loading region". (In previous designs, the "limit load" region of the limit control was included in the criteria for the limit mode call out on the front panel and annunciation outputs)
Compressor Running	The output is true whenever any compressors are started or running on the chiller and false when no compressors are either starting or running on the chiller. This status may or may not reflect the true status of the compressor in Service Pumpdown if such a mode exists for a particular chiller.
Chiller Head Pressure Relief Request Relay	This relay output is energized anytime the chiller is running in one of the following modes; Ice Making Mode or Condenser Pressure Limit Control Mode continuously for the duration specified by the Chiller Head Relief Relay Filter Time. The Chiller Head Relief Relay Filter Time is a service setpoint. The relay output is de-energized anytime the chiller exits all above modes continuously for the duration specified by the same Chiller Head Relief Relay Filter Time.

The Symbio800 Service Tool (Tracer TU) is used to install and assign any of the above listed events or status to each of the four relays provided with this option.

The default assignments for the four available relays are listed below.

LLID Name LLID Software **Output Name** Default **Relay Designa**tion **Operating Status** Relay 0 Status Relay 4, J2-1,2,3 Head Pressure Relief Request Programmable Relays Relay 1 Status Relay 3, J2-4,5,6 Chiller Limit Mode Relay Relay 2 Status Relay 2, J2-7,8,9 Chiller Alarm Relay (latching or nonlatching) Relay 3 Status Relay 1, J2-10,11,12 Compressor Running Relay

Table 25. Programable Relays

Emergency Stop

The Symbio800 provides auxiliary control for a customer specified/installed latching trip out. When this customer-furnished remote contact is provided, the chiller will run normally when the contact is closed. When the contact opens, the unit will trip off on a manually resettable diagnostic. This condition requires manual reset at the chiller switch on the front of the control panel.

External Auto/Stop

If the unit requires the external Auto/Stop function, the installer must provide leads from the remote contacts to the proper terminals of the LLID on the control panel.

The chiller will run normally when the contacts are closed. When the contact opens, the compressor(s), if operating, will go to the RUN:UNLOAD operating mode and cycle off. Unit operation will be inhibited. Re-closure of the contacts will permit the unit to automatically return to normal operation.

Note: A "panic" stop (similar to "emergency" stop) can be manually commanded by pressing the STOP button twice in a row, the chiller will immediately shut down, but without creating a latching diagnostic.

Soft Loading

Soft loading will prevent the chiller from going to full capacity during the pulldown period.

The Symbio800 control system has two soft loading algorithms running all of the time. They are capacity control soft loading and current limit soft loading. These algorithms introduce the use of a Filtered Chilled Water Setpoint and a Filtered Current Limit Setpoint. After the compressor has been started, the starting point of the filtered chilled water setpoint is initialized to the value of the Evap Leaving Water Temperature. The filtered current limit setpoint is initialized to the value of the Current Limit Softload Starting Percent. These filtered setpoints allow for a stable pull-down that is user adjustable in duration.

They also eliminate sudden transients due to setpoint changes during normal chiller operation.

Three settings are used to describe the behavior of soft loading. The setup for softloading can be done using TU.

- Capacity Control Softload Time: This setting controls the time constant of the Filtered Chilled Water Setpoint. It is settable between 0 and 120 min.
- Current Limit Control Softload Time: This Setting controls the time constant of the Filtered Current Limit Setpoint. It is settable between 0 and 120 minutes.
- Current Limit Softload Starting Percent: This setting controls the starting point of the Filtered Current Limit Setpoint. It is adjustable from 40 to 100 percent RLA.

External Base Loading - Optional

Primarily for process control requirements, base loading provides for immediate start and loading of a chiller up to an externally or remotely adjustable current limit setpoint without regard to differential to start or stop, or to leaving water temperature control. This allows the flexibility to prestart or preload a chiller in anticipation of a large load application. It also allows you to keep a chiller on line between processes when leaving water temperature control would normally cycle the unit.

When the base loading option is installed through Tracer TU it will be controllable through TD7/ TU, External Hardware Interface or Tracer (if Tracer is installed). Order for precedence for all setpoints, TD7/TU then External then Tracer from lowest to highest priority. If one of the higher priority setpoints drops out due to a bad sensor or communication loss then base loading shall go to the next lowest priority of command and setpoint. The command settings and control setpoints associated with base loading are explained below.

Base Loading Control setpoint

This setpoint has three possible sources, an External Analog Input, TD7/TU or Tracer.

- TD7/TU Base Loading Control Setpoint The range is 40 - 100 % Compressor Load (Max %RLA). The default is 50%.
- Tracer Base Loading Control Setpoint The range is 40 - 100 % Compressor Load (Max %RLA). The default is 50%.
- External Base Loading Setpoint
 This is an Analog Input that sets the base loading setpoint. This signal can be controlled by
 either a 2-10Vdc or 4-20ma Signal based on configuration information. The equations show
 the relationship between input and percent compressor load:
 If the input is configured as a 4 20 mA:
 % Load = 3.75 * (mA Input) + 25
 If the input is configured as a 2 10 Vdc:
 % Load = 7.5 * (Vdc Input) + 25

Summit Interface - Optional

Symbio800 provides an optional interface between the chiller and a Trane Summit BAS. A Communications interface LLID shall be used to provide "gateway" functionality between the Chiller and Summit.

LonTalk Communication Interface - Optional

Symbio800 provides an optional LonTalk Communication Interface (LCI-C) between the chiller and a Building Automation System (BAS). An LCI-C LLID shall be used to provide "gateway" functionality between the LonTalk protocol and the Chiller.

External Chilled Water Setpoint - Optional

Symbio800 will accept either a 2-10 VDC or a 4-20 mA input (J9-4, J9-5) signal, to adjust the chilled water setpoint from a remote location.

External Current Limit Setpoint - Optional

Symbio800 will accept either a 2-10VDC or a 4-20mA input (J7-11, J7-12) signal to adjust the current limit setpoint from a remote location.

Percent Condenser Pressure Output - Optional

Symbio800 provides a 2-10 VDC analog output to indicate percent High Pressure Cutout (HPC) condenser pressure.

Percent HPC = (Condenser Pressure/High Pressure Cutout Setpoint)*100

Compressor Percent RLA Output - Optional

Symbio800 provides a 0-10 Vdc analog output to indicate % RLA of compressor starter average phase current. 2 to 10 Vdc corresponds to 0 to 120% RLA.

This section contains an overview of the operation and maintenance of Series R chillers equipped with microcomputer-based control systems. It describes the overall operating principles of the AdaptiR[™] with AFD option water chiller.

Following the section is information regarding specific operating instructions, detailed descriptions of the unit controls and options (Operator Interface - Control Systems), and maintenance procedures that must be performed regularly to keep the unit in top condition (Periodic Maintenance and Maintenance Procedures). Diagnostic information (Diagnostics) is provided to allow the operator to identify system malfunctions.

Note: To ensure proper diagnosis and repair, contact a qualified service organization if a problem should occur.

General

The Model AdaptiR[™] with AFD option units are single-compressor variable frequency water-cooled liquid chillers. These units are equipped with unit-mounted starter/control panels.

The basic components of an AdaptiR^m with AFD option unit are:

- Unit-mounted panel containing Symbio800 controller and Input/Output LLIDS and AFD
- Helical-rotary compressor
- Evaporator
- Electronic expansion valve
- · Water-cooled condenser with integral subcooler
- Oil supply system
- Oil cooler (application dependent)
- Related interconnecting piping
- Passitive Filter (option)

Refrigeration (Cooling) Cycle

The refrigeration cycle of the Series R chiller is conceptually similar to that of other Trane chiller products. It makes use of a shell-and-tube evaporator design with refrigerant evaporating on the shell side and water flowing inside tubes having enhanced surfaces.

The compressor is a twin-rotor helical rotary type. It uses a suction gascooled motor that operates at lower motor temperatures under continuous full and part load operating conditions. An oil management system provides an almost oil-free refrigerant to the shells to maximize heat transfer performance, while providing lubrication and rotor sealing to the compressor. The lubrication system ensures long compressor life and contributes to quiet operation.

Condensing is accomplished in a shell-and-tube heat exchanger where refrigerant is condensed on the shell side and water flows internally in the tubes.

Refrigerant is metered through the flow system using an electronic expansion valve, that maximizes chiller efficiency at part load.

A unit-mounted starter and control panel is provided on every chiller. Microprocessor- based unit control modules (Symbio800) provide for accurate chilled water control as well as monitoring, protection and adaptive limit functions. The "adaptive" nature of the controls intelligently prevents the chiller from operating outside of its limits, or compensates for unusual operating conditions, while keeping the chiller running rather than simply tripping due to a safety concern. When problems do occur, diagnostic messages assist the operator in troubleshooting.

Cycle Description

The refrigeration cycle for the AdaptiR[™] with AFD option chiller can be described using the pressure- enthalpy diagram shown in Figure 32 Key State Points are indicated on the figure and are

referenced in the discussion following. A schematic of the system showing the RTHD refrigerant flow loop as well as the lubricant flow loop is shown in Figure 33 and Figure 36. The RTHD variable volume ratio refrigerant flow loop and lubricant flow loop are shown in Figure 34 and Figure 37.

Figure 32. Pressure /Enthalpy Curve

Evaporation of refrigerant occurs in the evaporator. A metered amount of refrigerant liquid enters a distribution system in the evaporator shell and is then distributed to the tubes in the evaporator tube bundle. The refrigerant vaporizes as it cools the water flowing through the evaporator tubes. Refrigerant vapor leaves the evaporator as saturated vapor (State Pt. 1).

The refrigerant vapor generated in the evaporator flows to the suction end of the compressor where it enters the motor compartment of the suction-gascooled motor. The refrigerant flows across the motor, providing the necessary cooling, then enters the compression chamber. Refrigerant is compressed in the compressor to discharge pressure conditions. Simultaneously, lubricant is injected into the compressor for two purposes: (1) to lubricate the rolling element bearings, and (2) to seal the very small clearances between the compressor's twin rotors. Immediately following the compression process

the lubricant and refrigerant are effectively divided using an oil separator. The oil-free refrigerant vapor enters the condenser at State Pt. 2. The lubrication and oil management issues are discussed in more detail in the compressor description and oil management sections that follow.

Baffles within the condenser shell distribute the compressed refrigerant vapor evenly across the condenser tube bundle. Cooling tower water, circulating through the condenser tubes, absorbs heat from this refrigerant and condenses it.

As the refrigerant leaves the bottom of the condenser (State Pt. 3), it enters an integral subcooler where it is subcooled before traveling to the electronic expansion valve (State Pt. 4). The pressure drop created by the expansion process vaporizes a portion of the liquid refrigerant. The resulting mixture of liquid and gaseous refrigerant then enters the Evaporator Distribution system (State Pt. 5). The flash gas from the expansion process is internally routed to compressor suction, and while the liquid refrigerant is distributed over the tube bundle in the evaporator.

The AdaptiR[™] with AFD option chiller maximizes the evaporator heat transfer performance while minimizing refrigerant charge requirements. This is accomplished by metering the liquid refrigerant flow to the evaporator's distribution system using the electronic expansion valve. A relatively low liquid level is maintained in the evaporator shell, which contains a bit of surplus refrigerant liquid and accumulated lubricant. A liquid level measurement device monitors this level and provides feedback information to the Symbio800 unit controller, which commands the electronic expansion valve to reposition when necessary. If the level rises, the expansion valve is closed slightly, and if the level is dropping, the valve is opened slightly such that a steady level is maintained.

Figure 33. RTHD Refrigerant Flow Diagram

Compressor Description

Figure 35. Compressor Description

The compressor used by the Series R chiller consists of three distinct sections: the motor, the rotors and the bearing housing. Refer to Figure 35.

Compressor Motor

A two-pole, hermetic, squirrel-cage induction motor directly drives the compressor rotors. The motor is cooled by suction vapor drawn from the evaporator and entering the end of the motor housing (Figure 35). The motor of variable volume ratio compressor equiped with two motor winding temperature sensors to monitor the motor winding temperature all the time, when the motor winding temperature is close to or higher than the setpoint, then it will trigger the motor winding temperature protection logic, that can make high motor reliability.

Compressor Rotors

Each Series R chiller uses a semi-hermetic, direct-drive helical rotary type compressor. Excluding the bearings, each compressor has only 3 moving parts: 2 rotors - "male" and "female" - provide compression, and a slide valve that controls capacity, the slide valve of variable volume ratio compressor controls the internal volume ratio. See Figure 35. The male rotor is attached to, and driven by the motor, and the female rotor is, in turn, driven by the male rotor. Separately housed bearing sets are provided at each end of both rotors on the AdaptiR[™] with AFD option units. The slide valve is located below (and moves along) the rotors.

The helical rotary compressor is a positive displacement device. Refrigerant from the evaporator is drawn into the suction opening at the end of the motor section. The gas is drawn across the motor, cooling it, and then into the rotor section. It is then compressed and released directly into the discharge plenum.

There is no physical contact between the rotors and compressor housing. Oil is injected into the bottom of the compressor rotor section, coating both rotors and the compressor housing interior. Although this oil does provide rotor lubrication, its primary purpose is to seal the clearance spaces between the rotors and compressor housing. A positive seal between these internal parts enhances compressor efficiency by limiting leakage between the high pressure and low pressure cavities.

Capacity control of traditional RTHD compressor is accomplished by means of a slide valve assembly and AFD. AFD can make chiller modulate from 30Hz to 50/60Hz. Capacity control of RTHD variable volume ratio compressor is accomplished by AFD and bypass device, AFD can make chiller modulate from 12Hz to 60Hz. Slide valve located in the rotor/bearing housing sections of the compressor. Positioned along the bottom of the rotors, the slide valve is driven by a piston/ cylinder along an axis that parallels those of rotors(Figure 35). Control algorithm always tries to have lower AFD frequency and relatively higher slide valve capacity to meet temperature control requirement. Which can make chiller always run with high efficiency.

Compressor load condition of traditional RTHD compressor is dictated by the coverage of the rotors by the slide valve and frequency. When frequency is 50/60Hz, the slide valve fully covers the rotors, the compressor is fully loaded. Unloading occurs as the frequency is away from 50/60Hz. When frequency decrease to 30Hz, the slide valve moves away from the suction end of the rotors. Frequency unloading lowers refrigeration capacity by reducing suction flow rate. Slide valve unloading lowers refrigeration capacity by reducing the compression surface of the rotors.

The slide valve of RTHD variable volume ratio compressor is used to control internal volume ratio. The pressure and temperature transducer installed on unit and can monitor the condition all the time, the HiVi and LoVi solenoild valves are controlled by specific control logic to proceed the volume ratio control, that can make unit always run with high efficiency. Capacity control is accomplished by frequency and bypass device together. When the frequency can't decrease any more and unit still have unloading need, the hot gas bypass valve will open to bypass some refrigerant gas from compressor discharge line to suction line to continue unloading, the coordination control of frequency and bypass device can make capacity stepless regulation.

Frequency Change

The AFD receives command from Symbio800 to modulate frequency, regulates compressor capacity accordingly to meet temperature control.

Slide Valve Movement

Movement of the slide valve piston (Figure 35) determines slide valve position which, in turn, regulates compressor capacity. Compressed vapor flowing in to and out of the cylinder governs piston movement, and is controlled by the load and unload solenoid valves.

The solenoid valves (both normally closed) receive "load" and "unload" signals from the Symbio800, based on system cooling requirements. To load the compressor, the Symbio800 opens the load solenoid valve. The pressurized vapor flow then enters the cylinder and, with the help of the lower suction pressure acting on the face of the unloader valve, moves the slide valve over the rotors toward the suction end of the compressor.

The compressor is unloaded when the unload solenoid valve is open. Vapor "trapped" within the cylinder is drawn out into the lower-pressure suction area of the compressor. As the pressurized vapor leaves the cylinder, the slide valve slowly moves away from the rotors toward the discharge end of the rotors.

When both solenoid valves are closed, the present position of slide valve is maintained.

On compressor shutdown, the unload solenoid valve is energized. Springs assist in moving the slide valve to the fully-unloaded position, so the unit always starts fully unloaded. The slide valve moving principle of RTHD variable volume ratio compressor is same with traditional RTHD compressor, the spring is removed for RTHD variable volume ratio compressor.

Oil Management System

Oil Separator

The oil separator consists of a vertical cylinder surrounding an exit passageway. Once oil is injected into the compressor rotors, it mixes with compressed refrigerant vapor and is discharged directly into the oil separator. As the refrigerant-and-oil mixture is discharged into the oil separator, the oil is forced outward by centrifugal force, collects on the walls of the cylinder and drains to the bottom of the oil separator cylinder. The accumulated oil then drains out of the cylinder and collects in the oil sump located near the top and in-between the evaporator and condenser shells.

Oil that collects in the oil tank sump is at condensing pressure during compressor operation; therefore, oil is constantly moving to lower pressure areas.

Oil Flow Protection

Oil flowing through the lubrication circuit flows from the oil sump to the compressor (see Figure 36 and Figure 37). As the oil leaves the sump, it passes through a service valve, an oil cooler (if used), oil filter, master solenoid valve, and another service valve. Oil flow then splits into two distinct paths, each performing a separate function: (1) bearing lubrication and cooling, and (2) compressor oil injection.

Oil flow and quality is proven through a combination of a number of sensors, most notably a pressure transducer and the optical oil level sensor.

If for any reason oil flow is obstructed because of a plugged oil filter, closed service valve, faulty master solenoid, or other source, the oil pressure transducer will read an excessively high pressure drop in the oil system (relative to the total system pressure) and shut down the chiller.

Likewise, the optical oil level sensor can detect the lack of oil in the primary oil system (which could result from improper oil charging after servicing, or oil logging in other parts of the system). The sensor will prevent the compressor from starting or running unless an adequate volume of oil is present. The combination of these two devices, as well as diagnostics associated with extended low system differential pressure and low superheat conditions, can protect the compressor from damage due to severe conditions, component failures, or improper operation.

If the compressor stops for any reason, the master solenoid valve closes; this isolates the oil charge in the sump during "off" periods. With the oil efficiently contained in the sump, oil is immediately available to the compressor at startup. Such flows would otherwise purge oil from the lines and the oil sump, which is an undesirable effect.

To ensure the required system differential pressure is adequate to move oil to the compressor, the Symbio800 attempts to both control a minimum system differential pressure as well as monitor it. Based on readings from pressure transducers in both the evaporator and condenser , the EXV is modulated to maintain evaporator pressure at a minimum of 25 psid below the condenser pressure. Once the minimum is met, the EXV will return to normal liquid level control (see the paragraph on "Cycle Description". If the differential is significantly lower than required, the unit will trip and initiate a appropriate diagnostics and would enforce a compressor "cool down" period.

To ensure proper lubrication and minimize refrigerant condensation in the oil sump, heaters are mounted on the bottom of the oil sump. An auxilliary contact of the compressor starter, energizes these heaters during the compressor off cycle to maintain a proper elevation of the oil temperature. The heater element is continuously energized while the compressor is off and does not cycle on temperature.

Oil Filter

All Series R chillers are equipped with replaceable-element oil filters. Each removes any impurities that could foul the compressor internal oil supply galleries. This also prevents excessive wear of compressor rotor and bearing surfaces and promotes long bearing life. Refer to the Section 9 for recommended filter element replacement intervals.

Compressor Bearing Oil Supply

Oil is injected into the rotor housing where it is routed to the bearing groups located in the motor and bearing housing sections. Each bearing housing is vented to compressor suction so oil leaving the bearings returns through the compressor rotors to the oil separator.

Compressor Rotor Oil Supply

Oil flowing through this circuit enters the bottom of the compressor rotor housing. From there it is injected along the rotors to seal clearance spaces around the rotors and lubricate the contact line between the male and female rotors.

Lubricant Recovery

Despite the high efficiency of the oil separators, a small percentage of oil will get past them, move through the condenser, and eventually end up in the evaporator. This oil must be recovered and returned to the oil sump. The function of active oil return is accomplished by a pressure-actuated pump referred to as the "gas pump". RTHD variable volume ratio unit use thermosyphon device to reclaim the oil in evaporator.

The gas pump, mounted just beneath the evaporator, is a cylinder with four ports controlled by two solenoids. The pump serves to return accumulating oil in the evaporator to the compressor at regular time intervals. As the refrigerant- oil mixture enters the gas pump from the bottom of the evaporator, a fill solenoid opens to allow refrigerant vapor to be vented into the top of the evaporator, and is then closed. A second solenoid then opens to allow refrigerant at condenser pressure to enter the gas pump. Simultaneously, a check valve prevents reverse flow back into the evaporator. A liquid refrigerant and oil mixture is displaced from the gas pump cylinder and is directed through a filter to the compressor. The oil then combines with oil injected into the compressor and returns to the oil sump via the oil separators.

The thermosyphon device is composed of plate heat exchanger, check valve, filter, and solenoild valve. The plate heat exchanger is mounted beneath the evaporator, the mixture flow of refrigerant and oil from evaporator bottom flow through filter and check valve then goes into the low pressure side of BPHE, then heated by the other refrigerant gas flow with high temperature and high pressure from condenser top to superheated mixture flow of refrigerant gas and oil then enter into compressor. The oil then combines with oil injected into the compressor and returns to the oil sump via the oil separators. High temperature refrigerant gas was cooled by cold mixture flow, then flow through orifice and enter the evaporator. The solenoild valve will be opened with specific period(which connect BPHE inlet pipe of high pressure side and low pressure side), aim to use high pressure refrigerant gas to blow the oil traped in BPHE to the compressor directly.

Detail information pls. see Figure 37.

Oil Cooler

The oil cooler is a brazed plate heat exchanger located near the oil filter. It is designed to transfer approximately one ton of heat from the oil to the suction side of the system. Subcooled liquid is the cooling source.

The oil cooler is required on units running at high condensing or low suction temperatures. The high discharge temperatures in these applications increase oil temperatures above the recommended limits for adequate lubrication and reduce the viscosity of the oil.

Symbio800 Overview

This section covers information pertaining to the Symbio[™] 800 controller hardware.

The Symbio[™] 800 controller is a factory-installed, application specific and programmable controller designed to control chillers and large packaged HVAC equipment. A 7 inch user interface features a touchsensitive color screen that provides facility managers at-a-glance operating status, performance monitoring, scheduling changes, and operating adjustments. Other advanced features include automated controller backup, and optional features such as secure remote connectivity, wireless building communications, mobile device connectivity, and custom programming with expandable I/O.

For more information, see Symbio 800 Installation, Operation, and Maintenance manual BAS-SVX080*- EN.

Figure 38. Front View of Symbio800

Figure 39. wiring locations and connection ports

Tracer TU

The AdaptiView[™] TD7 operator interface allows for daily operational tasks and setpoint changes. However, to adequately service chillers, Tracer[®] TU service tool is required. (Non-Trane personnel, contact your local Trane office for software purchase information.) Tracer TU adds a level of sophistication that improves service technician effectiveness and minimizes chiller downtime. This portable PC-based service-tool software supports service and maintenance tasks, and is required for software upgrades, configuration changes and major service tasks.

Tracer TU serves as a common interface to all Trane chillers, and will customize itself based on the properties of the chiller with which it is communicating. Thus, the service technician learns only one service interface.

The panel bus is easy to troubleshoot using LED sensor verification. Only the defective device is replaced. Tracer TU can communicate with individual devices or groups of devices.

All chiller status, machine configuration settings, customizable limits, and up to 100 active or historic diagnostics are displayed through the service-tool software interface.

LEDs and their respective Tracer TU indicators visually confirm the availability of each connected sensor, relay, and actuator.

Tracer TU is designed to run on a customer's laptop, connected to the Tracer AdaptiView control panel with a USB cable. Your laptop must meet the following hardware and software requirements:

- 1 GB RAM (minimum)
- 1024 x 768 screen resolution
- CD-ROM drive
- Ethernet 10/100 LAN card
- An available USB 2.0 port
- Windows 7 Enterprise or Professional operating system (32-bit or 64-bit)

Note: Tracer TU versions 8.6 and earlier will also support Microsoft® Windows® XP Professional operation system with Service Pack 3 (SP3).

• Microsoft .NET Framework 4.0 or later

Note:

- Tracer[®] TU is designed and validated for this minimum laptop configuration. Any variation from this configuration may have different results. Therefore, support for Tracer TU is limited to only those laptops with the configuration previously specified.
- For more information, see TTU-SVN01*-EN Tracer® TU Getting Started Guide.

Figure 40. Tracer TU

	1.0x1Summary 2.UnitStatus 3.Alarma 4 Control	brikan & Eventlops
0	Connected to: UC800	Current Rose 1987 B
	Model Tracer (C100 # CeriTratia: # Build	Land Thermite Action
	O 1 Engener	© 4 second
	44.1 1F Active Diffed Water Sepore	44 9 Treet Panel Chiled Water Sepore:
	35.0 7 Entering Water Temperature	645-Edu/FF • Separat Source
	54.0 F Leaving Water Temperature	100 LRLA, Rince Panel Gament Line Separat
	510 F Selated Religious Temperature	
	7.4.F3UA Partyment Pressure	Construction of the Constr
	43.9 Approach Temperature	Q 5 Sau
	On Di Waar Pune Execut	MO 42 Area Count Last Serves
	Row Water Flow Switch Status	ADA Average Man Canad
		http://www.committee.com
		101 Salar Hore Court 1
	Q 2 and	All Date New Court 2
	RSS Entre Way Second as	00a Data New Court 12
	MANY HAR THE AVERAGE	All State State (1)
	Will Y Second Education	554 Date New Cover 13
	MALE PLAN Between Descent	and see and see a
	105 Amount Terrantee	
	De Til Marchen Frank	Q 6 5m
	The Way Des Later Data	A STREET AND A ST
	The Content and adde	Adaptive Purge Trip Level Hilde
		Aut. • Furge Regen Cycle
	O 3 Sector	00.00 Mri Sec Dely Rumous 24 Hours
		00.00 Mer Sec Average Daily Pumpinul 7 Days
	Ranning Compressor Status	10 Min Daly Runpout Line
	0.0% III Order Central Signal	10:00 Min Sec Time Until Need Runge Run
	Or Di Purp Command	
	an in state of the sector	

Controls Interface

TD7 Display

Each chiller is equipped with the TD7 interface. TD7 has the capability to display additional information to the advanced operator including the ability to adjust settings. Multiple screens are available and text is presented in multiple languages as factory-ordered or can be easily downloaded online.

Tracer TU

Tracer TU can be connected to the Symbio800 and provides further data, adjustment capabilities, diagnostics information, downloadable software.

Tracer AdaptiView[™]TD7

Operator Interface

Information is tailored to operators, service technicians, and owners. When operating a chiller, there is specific information you need on a day-to-day basis—setpoints, limits, diagnostic information, and reports. Day-to-day operational information is presented at the display. Logically organized groups of information— chiller modes of operation, active diagnostics, settings and reports put information conveniently at your fingertips.

Figure 41. TD7

Operator Display Boot Screen

Display Loading Data

Main Display Area/Home Screen

All screens appear within the main display area (shown as location in Figure 42).

Home screen: Chiller status information

The home screen (Figure 42) provides the most frequently needed chiller status information on "touch targets" (the entire white rectangular areas) for each chiller component. Touching any touch target displays a screen containing more chiller status information related to each component .

Figure 42. Main Screen

Table 26. Main Screen Items

Description	Resolution	Units
Active Chilled Water Setpoint	X.X	°F / °C
Active Current Limit Setpoint	X.X	%RLA
Average Motor Current %RLA	X.X	%RLA
Evap Entering/Leaving Water Temp	X.X	°F / °C
Cond Entering/Leaving Water Temp	X.X	°F / °C
Frequency Command	X.X	Hz
Evaporator Water Flow Status	X.X	
Condenser Water Flow Status		
AFD Average Motor Current % RLA	X.X	%RLA

Home Screen, Auto Mode

Viewing Chiller Operating Modes

On the Reports screen, touch Chiller Operating Modes to view the current operating status of the chiller in terms of the top-level operating mode and submodes.

Note: You can also access the Chiller Operating Modes screen from the chiller status button in the upper left corner of the screen.

Figure 43. Chiller Operating Modes screen

	Taged .	Exaperator Leaving Water Temperature	Auto	Stop
-			Operatio	g Modes 📑
	Chiller: Stopped			
	Degnostic Stutidown	- Auto Reset		
	Diagnostic Evaporato	Pump Override		
	Diagnostic Shutdown	Manual Reset		
	Local Stop			
10	1 Alexandre		California	
	Alarms	Reports	HI Settings	G

Table 27. Operating Modes

Chiller Modes	Description
MP Resetting	
Stopped	The chiller is not running and cannot run without intervention. Further information is provided by the sub-mode:
Local Stop	Chiller is stopped by TD7 Stop button command- cannot be remotely overridden.
immediate Stop	Chiller is stopped by the TD7 Panic Stop (by pressing Stop button twice in succession) – pre- vious shutdown was manually commanded to shutdown immediately without a run-unload or pumpdown cycle - cannot be remotely overridden.
Diagnostic Shutdown – Manual Reset	The chiller is stopped by a diagnostic that requires manual intervention to reset.
Run Inhibit	The chiller is currently being inhibited from starting (and running*), but may be allowed to start if the inhibiting or diagnostic condition is cleared. Further information is provided by the sub-mode:
Diagnostic Shutdown – Auto Reset	The entire chiller is stopped by a diagnostic that may automatically clear.
Starting is Inhibited by External Source	The chiller is inhibited from starting (and running) by the "external stop" hardwired input.
Start Inhibited by BAS	The chiller is inhibited from starting (and running) by command from a Building Automation System via the digital communication link (com 4 or com 5).
Waiting for BAS Communications	This is a transient mode - 15-min. max, and is only possible if the chiller is in the Auto - Remote command mode. After a power up reset, it is necessary to wait for valid communi- cation from a Building Automation System (Tracer) to know whether to run or stay inhibit- ed. Either valid communication will be received from the Building Automation System (e.g. Tracer), or a communication diagnostic ultimately will result. In the latter case the chiller will revert to Local control.
Power Up Delay Inhibit min:sec	The compressor is currently being inhibited from starting as part of the power up start delay (or staggered start) feature. This feature is intended to prevent multiple chillers from all starting simultaneously if power is restored to all chillers simultaneously.
Low Differential Refrigerant Pressure Cool- Down Timemin:sec	See Oil Flow Protection (Spec Page 85)
Cool Down Restart Inhibit Time min:sec	The chiller is inhibited from running for a brief period of time if it is commanded shutdown due high motor winding temp diagnostic.
Auto	The chiller is not currently running but can be expected to start at any moment given that the proper conditions and interlocks are satisfied. Further information is provided by the sub-mode:
Waiting For Evap Water Flow	The chiller will wait up to 20 minutes in this mode for evaporator water flow to be established per the flow switch hardwired input.
Waiting for A Need to Cool	The chiller will wait indefinitely in this mode, for an evaporator leaving water temperature higher than the Chilled Water Setpoint plus the Differential to Start.
Waiting to Start	The chiller is not currently running and there is a call for cooling but start is de- layed by certain interlocks or proofs. Further information is provided by the sub- mode:
Waiting For Cond Water Flow	The chiller will wait up to 20 minutes in this mode for condenser water flow to be established per the flow switch bardwired input.

Table 27. Operating Modes

Chiller Modes	Description
Start Inhibited Waiting for Oil	The chiller will wait up to 2 minutes in this mode for oil level to appear in the oil tank.
Condenser Water Pump Pre-Run	The chiller will wait up to 30 minutes (user adjustable) in this mode for to allow the condens-
Timemin:sec	er water loop to equalize in temperature
Restart Inhibit min:sec	The compressor is currently unable to start due to its restart inhibit timer. A given com- pressor is not allowed to start until 5 minutes (adj) has expired since its last start, once a number of "free starts" have been used up.
Waiting For EXV Preposition	The Chiller will wait for the time it takes the EXV to get to its commanded pre-position prior
	to starting the compressor. This is typically a relatively short delay and no countdown timer is necessary (less than 15 seconds)
Minimum Condenser Watermin:sec	Only possible when Condenser Head Pressure Control option is enabled, this wait may be necessary due to the Head Pressure control device's stroke time.
Condenser Water Regulating Control min:sec	Only possible when Condenser Head Pressure Control option is enabled, this wait may be necessary due to the Head Pressure control device's stroke time
Running	The chiller, circuit, and compressor are currently running. Further information is provided by the sub-mode:
High Discharge Temp Limit	The compressor is running and is being forced loaded to its step load point, without regard to the leaving water temperature control, to prevent tripping on high compressor discharge temperature.
Base Loaded	Chiller is running in "Base Load" operation where the capacity of the chiller is controlled to maintain a given current per an adjustable set point. The chiller is forced to run without regard to the chilled water temperatures and the differential to start and stop
Capacity Control Softloading	The chiller is running, but loading is influenced by a gradual `pulldown" filter on the chilled water temperature setpoint The settling time of this filter is user adjustable as part of the softload control feature.
Current Control Softloading	The chiller is running, but loading is influenced by a gradual filter on the current limit set- point The starting current and the settling time of this filter is user adjustable as part of the softload control feature.
EXV Controlling Differential Pressure	Liquid level control of the Electronic Expansion Valve has temporarily been suspended. The EXV is being modulated to control for a minimum differential pressure. This control implies low liquid levels and higher approach temperatures, but is necessary to provide minimum oil flow for the compressor until the condenser water loop can warm up to approx 50F.
Chilled Water Control	Unit is running in the Cooling Mode of operation and is attempting to control to the active Chilled Water Setpoint. (Note this mode was not necessary prior to the introduction of Hot Water Control)
	Hater controly
Running – Limited	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes
Running – Limited Condenser Pressure Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.*
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping. * The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressors on the circuit will be unloaded to prevent tripping.*
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.*
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.*
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the limit setpoint by reducing the liquid level and unloading the slide valve.
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annuncia- tion of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Com- pressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping. * The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbal- ance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat ap- proaches the limit settion by reducing the liquid level and unloading the slide valve. This is limit control that acts to prevent chiller shutdown when the estimated refrigerant flow approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit	 The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches limit setpoint by increasing compressor capacity.
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit Max CFM Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent exceeding the unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches limit setpoint by increasing compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator temp approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated minimum flow by limiting maximum compressor capacity.
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit Max CFM Limit Low Water Temp Difference Limit	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressors on the circuit will be unloaded to prevent tripping.* The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the limit setpoint by reducing the liquid level and unloading the slide valve. This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches limit setpoint by increasing compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity.
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit Max CFM Limit Low Water Temp Difference Limit Note: Other normal running modes (see a	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the calculated minimum flow by increasing the slide valve. This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the estimated refrigerant flow approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit Max CFM Limit Low Water Temp Difference Limit Note: Other normal running modes (see a Shutting Down	The chiller, circuit, and compressor are currently running, but the operation of the chiller, compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressors on the circuit will be unloaded to prevent tripping.* The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the limit setpoint by reducing the liquid level and unloading the slide valve. This is limit control that acts to prevent chiller shutdown when the estimated refrigerant flow approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the estimated reprigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity. This is limit control that acts to prevent too much refrigerant flow by pass from condenser to compressor that will cause very low efficiency. bove) may also appear under this top level mode. The chiller is still running but shutdown is imminent. The chiller is going through a compressor run-unload. sequence. Shutdown is necessary due to one (or more) of the following sub-modes:
Running – Limited Condenser Pressure Limit Low Evaporator Refrigerant Temperature Inhibit Capacity Limited by Low Liquid Level Current Limit Phase Unbalance Limit Low Discharge Superheat Limit Oil Loss Avoidance High Motor Winding Temp Limit Max CFM Limit Low Water Temp Difference Limit Note: Other normal running modes (see a Shutting Down Local Stop	The chiller, circuit, and compressor are currently running, but the operation of the chiller/ compressor is being actively limited by the controls. Further information is provided by the sub-mode.* See the section below regarding criteria for annunciation of limit modes The circuit is experiencing condenser pressures at or near the condenser limit setting. Compressors on the circuit will be unloaded to prevent exceeding the limits.* The circuit is experiencing saturated evaporator temperatures at or near the Low Refrigerant Temperature Cutout setting. Compressors on the circuit will be unloaded to prevent tripping.* The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor is running and its capacity is being limited by high currents. The current limit setting is 100% RLA (to avoid overcurrent trips) or lower as set by the compressor's "share" of the active current limit (demand limit) setting for the entire chiller.* The compressor is running and its capacity is being limited by excessive phase current unbalance.* This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the calculated minimum flow by increasing the slide valve capacity and/or VFD frequency This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches limit setpoint by increasing compressor capacity. This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated minimum flow by limiting maximum compressor capacity. This is limit control that acts to prevent tho much refrigerant flow bypass from condenser to compressor that will cause very low efficiency. bove) may also appear under this top level mode. The chiller is in the process of being stopped by TD7 Stop button command

Table 27. Operating Modes

Chiller Modes	Description		
Diagnostic Shutdown – Manual Reset	Chiller is in the process of being stopped by a Latching Diagnostic shutdown – Manual Reset is required to clear		
Diagnostic Shutdown – Auto Reset	Chiller is in the process of being stopped by a Diagnostic shutdown – Automatic clearing of the diagnostic is possible if condition clears.		
Compressor Unloading min:sec	The compressor is in its "run – unload" state in which it is being continuously unloaded for 40 sec prior to shutdown.		
Starting is Inhibited by External Source	Chiller is in the process of being stopped by the External Stop hardwired input		
Start Inhibited by BAS	The Chiller is in the process of shutdown due to a command from the Building Automation System (e.g. Tracer)		
Evaporator Water Pump Off Delay min:sec			
Service Override	The Chiller is in a Service Override mode		
Service Pumpdown	The chiller, circuit, and compressor is running via a manual command to perform a Service Pumpdown. Both evap and condenser water pumps are commanded to be running. The EXV is being held wide open, but the manual liquid line service value should be closed		

Alarms

You can use the display to view alarms and to reset them. Alarms are communicated to the display immediately upon detection.

Viewing the Alarms Screen

Touch the Alarms button in the main menu area (Figure 42) to view the Alarms screen. A table of active alarms appears that is organized chronologically with the most recent at the top of the list, as shown in Figure 44. This example shows the default view, which appears each time you return to the screen.

Note: A page number appears in the lower right corner of the screen. If a screen contains more than one page, up/down arrows also appear for viewing the other pages.

Figure 44. Alarm Screen

The Alarms screen is accessible by depressing the Alarms enunciator. A verbal description will be provided.

A scrollable list of the last active Alarms is presented. Performing a "Reset Alarms" will reset all active Alarms regardless of type, machine or circuit. The scrollable list will be sorted by time of occurrence.

If a informational warning is present, the "Alarms" key will be present but not flashing. If a Alarm shutdown (normal or immediate)has occurred, the "Alarm" key will display that is flashing. If no Alarms exist, the "Alarm" key will not be present.

Reports

You can use the Tracer display to view a variety of reports and to create and edit a custom report. All reports contain live data that refreshes every 2–5 seconds.

Viewing the Reports Screen

Touch the Reports button in the main menu area (Figure 4) to view the Reports screen. The Reports screen contains the following buttons:

- Custom Report1
- Custom Report2
- Custom Report3
- Evaporator
- Condenser
- Compressor
- Motor
- About
- Operating Modes
- Log Sheet
- ASHRAE Chiller Log

Each button links to the report named on the button.

Figure 45. Report Screen

The Reports tab allows a user to select from a list of reports headings. Each report will generate a list of status items as defined in the tables that follow.

Editing a Custom Report

You can edit the custom report by adding, removing, or re-order data as follows:

- 5. On the Custom Report screen, touch Edit. The Edit Custom Report screen appears.
- 6. Add, remove, or re-order as follows:
- To add an item to the custom report, touch it. It responds by changing to blue. You an use the arrows to scroll through the rest of the items that can be added to the custom report. Then touch Add to move the selected item to the box on the right side of the screen. To add all of the remaining items in the left box to the custom report, touch Add All.
- To remove an item from the custom report, touch it. It responds by changing to blue. You can use the arrows to scroll through the rest of the items that can be removed from the custom report. Then touch Remove to move the selected item to the box on the left side of the screen.
- To re-order items in the custom report, touch it. It responds by changing to blue. Use the arrows to change the order of a highlighted item.
- 7. To save and view your edited custom report, touch Save.

Statued	Evoperatur Leaving Water Temperature	Auto	Stop
		Edit Custo Cuito	m Report 1
Select the values you would like to appe Order	ter on your Custom Report. Then to Total	uch Save. Selected: 2	0
Active Chiled Water Setpoint	Top	Level Mode	
External Chilled Water Setport	< Remove Ada	ve Chiled Water Setpor	et Source
External Hot Water Setport	Sectore A		
		line	Cancel
Alarms	D Reports	H. Settings	
		H	

Figure 46. Edit Custom Report screen

Figure 47. Report Evaporator Screen

C and Second		Evaporator Leaving Water Temperature60.0 °F		Auto	
SSS Evaporator	SSS 646 porator Condenser		Compressor Hotor		aporator \\\
Active Chiled Water 5 44.0 °F	letport	Evaporator Entering Water Temperature 60.0 %		Evaporator Leaving Water Temperature 60.0 %	
Evaporator Water Pu Auto	mp Override	Evaporator Wate No Flow	er Flow Status	Evaporator Approach Temperatur	
EXV Position Percent 0.0%		Evaporator Refigerant Pressure 49.9 PSIA		Evaporator Satura 40.1 °F	ed Rigt Temp
				Page 1 of 2	0
Alarms		B Report	ts 👘	HI Settings	

Table 28. Report Evaporator Screen Items

Description	Resolution	Units
Active Chilled Water Setpoint	X.X	°F / °C
Evaporator Entering Water Temperature	X.X	°F / °C
Evaporator Leaving Water Temperature	X.X	°F / °C
Evaporator Water Flow Status	Flow, No Flow	Text
Evaporator Water Pump Override	Auto, On	Text
Evaporator Approach Temperature	X.X	°F / °C
EXV Position Percent	X.X	%
Evaporator Refrigerant Pressure	XXX.X	PSIA/
		kPaA
Evaporator Saturated Rfgt Temp	X.X	°F / °C
Evaporator Refrigerant Liquid Level	X.XX	in/mm

Figure 48. Report Condenser Screen

Table 29. Report Condenser Screen Items

Description	Resolution	Units
Condenser Entering Water Temperature	X.X	F/C
Condenser Leaving Water Temperature	X.X	F/C
Condenser Water Flow Status	Flow, No Flow	Text
Condenser Water Pump Override	Auto, On	Text
Condenser Approach Temperature	X.X	F/C
EXV Position Percent	X.X	%
CondenserRefrigerant Pressure	XXX.X	PSIA/kPaA
Condenser Saturated Rfgt Temp	X.X	F/C
Differential Refrigerant Pressure	XXX.X	PSIA/kPaA
Outdoor Air Temperature	X.X	F/C

Figure 49. Report Compressor Screen

	moet	E + april alto Temporal	r Leaving Water ure60.0 °F	Auto	Stop
))) Evaporator	646 Condenses	C/C) Compression	-1881 Motor	Cor	npressor (2)(2
Compressor Runne Off	ng Status	Average Motor 0 95.0%	lument % RLA	Frequency Comma 30.0 Hz	nd
Compressor Starts 0	ē.	Compressor Ran 00:00 Hr:Min	ning Time	Compressor OI Pre 82.0 PSIA	sture
Oi Loss Level Sens Wet	lor	Discharge Temp 120.0 °F	orature	Discharge Superhei 50.7 °F	e .
				Page 1 of 2	0
Alam	15	Report	5	ili. Settings	- e

Table 30. Report Compressor Screen Items

Description	Resolution	Units
Compressor Running Status	On,Off	Text
Average Motor Current %RLA	XX.X%	%RLA
Compressor Starts	XX	Text
Compressor Running Time	XX:XX	Hr:Min
Oil Loss Level Sensor	Wet, Dry	Text
Discharge Temperature	X.X	°F / °C
Discharge Temperature	X.X	°F / °C
Compressor Oil Pressure	XXX.X	PSIA/kPaA
Evaporator Refrigerant Pressure	XXX.X	PSIA/kPaA
Condenser Refrigerant Pressure	XXX.X	PSIA/kPaA
Differential Refrigerant Pressure	XXX.X	PSIA/kPaA
Frequency Command	XX.X	Hz
AFD Average Motor Current % RLA	X.X	%RLA
Compressor Vi State Command	Inactive/	
	High/Low	

60.0 °F Auto Stop 444 200 -1000 Motor 4 Evaporator Corden Compresso Meter Active Current Limit Setpoint 100.0% Average Motor Current % RLA 95.0% v Conv 30.0 Hz Stater Meter Current 11 % RLA arter Motor Current 12 % RLA Starter Motor Current 13 % RLA 95.0% 95.0% 95.0% er Motor Current L2 Notor Current L3 ter Hotor Current L1 92.0 A 92.0 A 92.0 A Page 1 of 2 Reports IH Settings Aian ٩

Figure 50. Report Motor Screen

Table 31. Report Motor Screen Items

Description	Resolution	Units
Active Current Limit Setpoint	X.X	%RLA
Average Motor Current %RLA	X.X	%RLA
Starter Motor Current L1 %RLA	X.X	%RLA
Starter Motor Current L2 %RLA	X.X	%RLA
Starter Motor Current L3 %RLA	X.X	%RLA
Starter Motor Current L1	X.X	А
Starter Motor Current L1	X.X	А
Starter Motor Current L1	X.X	А
Starter Input Voltage AB	XXX.X	V
Starter Input Voltage BC	XXX.X	V
Starter Input Voltage CA	XXX.X	V
Average Motor Current	X.X	A
Average Phase Voltage	XXX.X	V
Frequency Command	XX.X	Hz
AFD Average Motor Current % RLA	X.X	%RLA
AFD Average Motor Current	X.X	Amps
AFD Motor Current U % RLA	X.X	% RLA
AFD Motor Current V % RLA	X.X	% RLA
AFD Motor Current W % RLA	X.X	% RLA
AFD Motor Current U	X.X	Amps
AFD Motor Current V	X.X	Amps
AFD Motor Current W	X.X	Amps
AFD Calculated Input Voltage	X.X	Volts
Motor Winding Temp #1	X.X	°F / °C
Motor Winding Temp #2	X.X	°F / °C
AFD Heatsink Temperature	X.X	°F / °C
AFD DC Bus Voltage	X.X	Volts
AFD Output Power	X.X	kW

Equipment Settings

You can use the TD7 display to monitor and change a variety of equipment settings.

Viewing the Settings Screen

Touch the Settings button in the main menu area (see Figure 42) to view the Settings screen. Equipment Settings identifies a column of buttons located on the screen (see the outlined column in Figure 51). The buttons are:

- Chiller Settings
- Feature Settings
- Chiller Water Reset
- Manual Control Settings

Each of these buttons provide access to a screen that contains additional buttons related to each-

topic. This section provides detailed information about these screens.

Figure 51. Setting Screen

			Settings #
Equipment Settings	Display Settings		
Culor Settings	Deglay Technologies	Secur	2
Feature Section	Larguage	1	
Chied Water Laset	Data and Time		
Marcal Contro Settings	Gran Toochearren		

Viewing and Changing Equipment Settings

Each button in the Equipment Settings column on the Settings screen takes you to a menu screen that contains a group of buttons. Each button displays the name of a setting and its current value(Figure 52). Touch any button to view a screen where you can change the setting for the featureshown on the button.

Note: A page number appears in the lower right corner of the screen. If a screen contains more than one page, up/down arrows also appear for viewing the other pages, as in Figure 52

Figure 52. Example equipment settings screen (Chiller Settings shown)

A a Supped	Evaporator Leaving Water Temperature	Auto	Stop
Selport Sware	Setport Server		Settings 👭
Setport Source BAS/Ext/FP	Provit Panel Chiled Water Setpoint 6.7 °C		
Differential to Start 2.8 °C	Differential to Stop 2.8 °C		
Front Panel Current Limit Setpoint 100.0%			
		Page 1 of 3	0
Alarms	C Reports	44 Settings	E I

To change an equipment setting, follow this procedure:

- 1. Touch one of the button in the Equipment Settings column on the Settings screen, such as Chiller Settings. The corresponding screen appears (in this case, the Chiller Settings screen).
- 2. Touch the button that shows the equipment setting you want to change. A screen that allows you to change the equipment setting appears. There are two types of these screens:
- For screens with button selections (Figure 53), touch the button that represents the setting you want. The button becomes shaded, and a Save button appears at the bottom of thescreen.
- For screens with numerical keypads (Figure 54), touch the appropriate numbers to change the current value. The new value appears above the keypad.
- 3. Touch Save to complete the change. The current value is updated in the upper left side of thescreen, demonstrating that the change has been communicated to the Tracer Symbio800 controller. The screen you were previously viewing appears.

Renno.	40.3 °F	Gergenet Solar an Beis Songlith Beigen Beiser Banal	Auto	Stop
		Chil	led Water Res	et Type 👭
Cument value: Dsable	Itsada			
	Annan -			
	Dublicon Au			
	Cinitat			
			244	1010
	C.V. International Contraction		-	
A deres	D hapath	E Del com	45 500	

Figure 53. Chilled Water Setpoint Screen

Figure 54. Changed Chilled Water Setpoint Screen

	Mageri	_	Evopsistin Lo Temperature	awing Water	Auto	Stop
				Front	Panel Chilled Water	Setpoint #
New Value:			43.5		Current Value:	
	1	2	3	←	44.0 %≓	
	4	5	6	с	Maximum: 65.0	
	7	8	9		Meimutic 37.7	
	1 •j	0	1		Save	Lucol.
• ^{Al}	erma		B Reports		at Settings	1

Keypad features:

- When you enter a new number, the value in the New value field is deleted and replaced with the new entry.
- The backspace (arrow) key deletes the characters you previously entered.
- If the keypad is used to enter a setpoint that is out of range, an error dialog will appear when you touch the Save button.
- Keypads that allow negative numbers have positive and negative number (+/-) keys.

Table 32. Settings Screen Items

Description	Resolution	Units
Chiller Settings		
Active Chilled Water Setpoint	± XXX.X	°F / °C
Active Current Limit Setpoint	XXX %	%RLA
Active Panel Base Load Cmd	On/Auto	Text
Active Base Loading Setpoint	XXX	%
Active Base Loading Command	On/Auto	Text
Differential to Start	XXX.X	°F / °C
Differential to Stop	XXX.X	°F / °C
Setpoint Source (BAS/Ext/FP, Ext/ Front Panel, Front Panel), BAS/Ext/FPText		
Evaporator Water Pump Off Delay	XX	Min
Condenser Pump Prestart Time	XX	Min
High Evap Water Temp Cutout	XXX.X	°F / °C
Evaporator Leaving Water Temp Cutout	XX.X	°F / °C
Low Refrigerant Temperature Cutout	XX.X	°F / °C
Current Limit Softload Start Point	XXX.X	%

Current Limit Control Softload Time	XXXX	Sec
Capacity Control Softload Time	XXXX	Sec
Local Atmospheric Pressure	XXX.X	psi/kPa
Power Up Start Delay	XXX	Min
Variable Vi Switchover Deadband	X.XXX	
Feature Settings		
External Chilled/Hot Water SetpointEnableEnable/Disable		Text
External Current Limit SetpointEnableEnable/Disable		Text
LCI-C Diagnostic EncodingEnable/Disable		Text
Chilled Water Reset(Constant, Outdoor, Return, Disable), Disable		Text
Return Reset Ratio	XXX	%
Return Start Reset	XXX.X	°F / °C
Return Maximum Reset	XXX.X	°F / °C
Outdoor Reset Ratio	XXX	%
Outdoor Start Reset	XXX.X	°F / °C
Outdoor Maximum Reset	XXX.X	°F / °C
Mode Overrides		
Evap Water Pump (Auto, On), Auto		Text
Cond Water Pump (Auto, On), Auto		Text
Display Reference		
Date Format ("mmm dd, yyy", "dd-mmm-yyyy"),	mmm dd, yyy	Text
Data Separator		Text
Time Format (12-hour, 24-hour), 12-hour		Text
Unit System (SI, English) English		Text
Pressure Units (Absolute, Gauge), Absolute		Text
Number Format		Text

Display Settings

You can use the Tracer AdaptiView display to change the format of the information that appears on the display, and to clean the touch screen.

Viewing the Settings Screen

Touch the Settings button in the main menu area (Figure 42) to view the Settings screen. Display Settings identifies a column of buttons located on the screen (see Figure 55). The buttons are:

- Display Preferences
- Language
- Date and Time
- Clean Display

Each button provide access to a screen that is related to the button name.

Viewing and Changing Display Preferences

On the Settings screen, touch Display Preferences to view a screen containing these buttons (see Figure 56):

- Date Format
- Date Separator
- Time Format
- Unit System
- Pressure Units
- Number Format

Image: Section State Auto Stop Display Preferences ## Date Format Inch-Pound Date Separator Pressure Units Seah (/) Pressure Units Trme Format 1000000.0

Figure 55. Display ReferenceScreen

Each of the buttons shows the name of a display preference and its format (current value). Touch any of these buttons to view a screen where you can change the format . The button representing the format currently used is shaded (see the "MMDDYYYY" button).

Figure 56. Data Format Page

A Report		Evaperator Leaving Water Temperature	Auto	Stop
			Dab	e Format 🕴
Current Value: MMDDYYYY	MHCOYYYY			
	YYYYMMDD			
	DOMMYYYY			
				Genel
			C.W.See	_
* ****		D	at seconds	

To change the format:

- 1. Touch the button that shows that format you prefer.
- 2. Touch Save to confirm your selection and to return to the Display Preferences screen.

Date Format

Use the Date Format screen to choose from the following date formats:

- MMDDYYYY (default)
- YYYYMMDD
- DDMMYYYY

Date Separator

Use the Date Separator screen to choose from the following date formats:

- None
- Slash (default)
- Hyphen

Time Format

Use the Time Format screen to choose from the following time formats:

- 12 hour (default)
- 24 hour

Units System

Use the Display Units screen to choose from the following display units:

- SI
- Inch-Pounds (default)

Pressure Units

Use the Pressure Units screen to choose from the following pressure units:

- kPaA (default if "SI" is chosen for display units)
- kPaG
- PSIA (default if "Inch-Pound" is chosen for display units)
- PSIG

Number Format

- 100000.0
- 100000,0

Figure 57. Language Page

					L	anguage 🖗
Current Value: English	English	Deutsch	Nederlands	Italiano	Español	Español Méx
	Português EU	Português BR	Svenska	Norsk	Français	Français Canaden
	Magyar	ЕМлужд	Česky	Româna	Русский	الفرنية
	עבריח	สาขาโทส	単文・鏡体	中文・繁観	8*8	<u> 한</u> 로어
	Bahasa Indonesia	Polski				Cancel

The language that is currently in use on the display is expressed as the current value on the Language screen. The button that displays the current value is shaded (see the "English" buttonin Figure 57 as an example).

To change the language:

- 1. Touch the button that identifies the language you prefer.
- 2. Touch Save to confirm your selection and to return to the Settings screen.

Figure 58. Date and Time screen

					Date	and Time
Date: MMDDYYYY	12	1	25	/ 2013	Current Date: 12/25/2013	
Time: 12-Hour	OZ	:	01	PM	Current Time: 02:01 PM	
Standard UTC Offset:	+00	:	00	-		
Summer Time:	Dicable		Enable		(UTC +00:00)	
UTC Time: 12/25/2013 02:02 PM						Bernet
Alarms			Rep	ots	H Settings	

The current date and time for the display is expressed as the current value. The current value appears below the center line on the screen.

Above the center line, the following date and time attributes appear:

- Month
- Day
- Year
- Hour
- Minute
- AM/PM

To change the date or time:

- 1. Touch the square presenting the attribute you want to change. The square becomes highlighted.
- 2. Touch the up or down arrow key on the screen until the your desired selection appears. Repeat the process for any other attributes you want to change.
- 3. Touch Save to confirm your selection and return to the Settings screen.

Cleaning the Display

On the Settings screen, touch Clean Display to disable the Tracer AdaptiView display screen for 15seconds so that you can clean the screen without it responding to touch. During this time, thescreen is black with a number in the center that counts down the seconds. After 15 seconds, theSettings screen re-appears.

It is safe to use glass cleaner to clean the touchscreen
12

Figure 59. Countdown screen

Security Settings

If security if enabled, the Tracer AdaptiView display requires that you log in with a four-digit security PIN to make settting changes that are protected by security. This feature prevents unauthorized personnel from doing so. There are two levels of security, each allowing specific changes to be made.

You can view all data without logging in. The log-in screen appears only when you try to change a setting that is protected by security, or when you touch the Log in button from the Settings screen.

Disabling/Enabling Security

The Tracer AdaptiView display gives you the ability to disable or enable the security feature that allows a user to log in and log out.

To disable security, you must be logged in:

1. From the Settings screen, touch the Security button. The Security screen appears (Figure 60).

Note: If you are logged out, the Log in screen appears.

- 2. Touch the Disable button. The button becomes shaded.
- Touch Save. The Settings screen appears with only the Security button visible. The Log in/ Logoutbutton is gone.

To enable security:

- 1. From the Settings screen, touch the Security button. The Security screen appears (Figure 60).
- 2. Touch the Enable button. The button becomes shaded.
- Touch Save. The Settings screen appears with a Log out button, in addition to the Security button.

Figure 60. Security screen

Figure 61. Security screen

A and a second	Evaparator Learning Water Temperature	ŕ	Auto	Stop
Equipment Settings	Display Settings		Security Setting	Settings #
Chier Settings	Depley Preferences		Sintativ Log In	
Coded Vision Reset	Duite and Tener		-	_
Hanud Control Settings	Qian Taxtaceen			
a Alarms	B Reports		HI Settings	

Logging In

There are two levels of security:

- Security Level 1 allows users to change a limited group of secure settings. The default security PIN is 1111.
- Security Level 2 allows users to change all secure settings. The default security PIN is 7123.

A technician must use the Tracer TU service tool to define a different PIN, or to recall a PIN that has been forgotten. When defining a PIN in Tracer TU, the technician enters a 4-digit PIN that corresponds with the desired level of security.

To log in:

- 1. Touch the Log in button. The Log in screen appears (Figure 62).
- 2. Use the keypad to enter your PIN.

- The PIN is a four-digit number, which was configured for your system with the Tracer TU service tool.
- As you enter the number, the PIN remains hidden by asterisks.

Note: If you enter an invalid PIN, an error message appears on the Log in screen.

- 3. Touch Save.
- If you viewed the Log in screen from touching Log in on the Settings screen, the Settings screen appears with a Log out button on it.
- If the Log in screen appeared when you tried to change a setting, you return to that setting screen.

Note: The PIN is valid until 30 minutes of inactivity passes, or until you log out.

	Sheered		Evaporator Leaving Water Temperinture		Auto	Stop	
						Log In 排	
	1	2	3		Enter the 4-digit sec	urty code.	
	4	5	6	с			
	7	8	9				
		0	1		1	Centrel	
. ^	larms		D Reports		al Settings	i i	

Figure 62. Log In Screen

Logging Out

To log out:

- 1. Touch the Log out button. A confirmation screen appears (Figure 63).
- 2. Touch Yesto confirm that you want to log out. The Settings screen appears with a Log in button on it.

Figure 63. Log out confirmation screen

			Evaporator Lauving W. Temperatura	ter Auto	Stop	P
Equ	4	Confirm Are you sure you	u want to log out?	Yes	Settings	H
	Aan	ns	D Reports	H Settings	-	ş

Tracer TU

TracerTU (non-Trane personnel, contact your localTrane office for a help) adds a level of sophistication that improves service technician effectiveness and minimizes chiller downtime. TheTracer AdaptiView control's operator interface is intended to serve only typical daily tasks. The portable PC-based service-tool software,Tracer TU, supports service and maintenance tasks. TracerTU serves as a common interface to allTrane® chillers,andwill customize itself basedonthe properties of the chiller with which it is communicating.Thus, the service technician learns only one service interface. The panel bus is easy to troubleshoot using LED sensor verification. Only the defective device is replaced.Tracer TU can communicate with individual devices or groups of devices. All chiller status, machine configuration settings, customizable limits, and up to 100 active or historic diagnostics are displayed through the service-tool software interface. LEDs and their respectiveTracerTU indicators visually confirm the availability of each connected sensor, relay, and actuator. TracerTU is designed to run on a customer's laptop, connected to theTracer AdaptiView control panel with a USB cable.Your laptop must meet the following hardware and software requirements:

- 1 GB RAM (minimum)
- 1024 x 768 screen resolution
- CD-ROM drive
- Ethernet 10/100 LAN card
- An available USB 2.0 port
- Microsoft[®] Windows[®] XP Professional operation system with Service Pack 3 (SP3) or Windows 7 Enterprise or Professional operating system (32-bit or 64-bit) 4.0 or later.
- **Note:** TracerTU is designed and validated for this minimum laptop configuration. Any variation from this configuration may have different results. Therefore, support forTracerTU is limited to only those laptops with the configuration previously specified.

Figure 64. TracerTU interface

Power Up

The Power up chart shows the respective TD7 screens during a power up of the main processor. This process takes from 30 to 50 seconds depending on the number of installed Options. On all power ups, the software model will always transition through the 'Stopped' Software state independent of the last mode. If the last mode before power down was 'Auto', the transition from 'Stopped' to 'Starting' occurs, but it is not apparent to the user.

Figure 65. Sequence of operation: power up diagram

Figure 66. TD-7 screen displays

Operator Display Boot Screen

Display Loading Data

Home Screen, Auto Mode

Power Up to Starting

The Power up to starting diagram shows the timing from a power up event to energizing the compressor. The shortest allowable time would be under the following conditions:

- 3. No motor restart inhibit
- 4. Evaporator and Condenser Water flowing
- 5. Power up Start Delay setpoint set to 0 minutes
- 6. Adjustable Stop to Start Timer set to 5 seconds
- 7. Need to cool

The above conditions would allow for a minimum power up to starting compressor time of 95 seconds.

Figure 67. Power Up to Starting

AdaptiR[™] with AFD option Sequence of Operation Power Up To Starting Compressor

Stopped to Starting

The stopped to starting diagram shows the timing from a stopped mode to energizing the compressor. The shortest allowable time would be under the following conditions:

- 1. No motor restart inhibit
- 2. Evaporator and Condenser Water flowing
- 3. Power up Start Delay Timer has expired
- 4. Adjustable Stop to Start Timer has expired
- 5. Need to cool

The above conditions would allow the compressor to start in 60 seconds

Limit Conditions

Symbio800 will automatically limit certain operating parameters during startup and run modes to maintain optimum chiller performance and prevent nuisance diagnostic trips. These limit conditions are noted in Table 33.

Table 33. Limit Conditions

Running - Limited	The chiller, circuit, and compressor are currently running, but the operation of the chiller/compressor is being actively limited by the controls. Further information is provided by the sub-mode.
Condenser Pressure Limit	The circuit is experiencing condenser pressures at or near the condenser limit setting. The compressor will be unloaded to prevent exceeding the limits.
Low Evaporator Re- frigerant Temperature Inhibit	The circuit is experiencing saturated evaporator temperatures at or near the Low Refrig- erant Temperature Cutout setting. The compressors will be unloaded to prevent trip- ping.
Capacity Limited by Low Liquid Level	The circuit is experiencing low refrigerant liquid levels and the EXV is at or near full open. The compressor will be unloaded to prevent tripping.
Current Limit	The compressor is running and its capacity is being limited by motor power. For RTHD with VSD, this limit do not work on the motor current directly, the motor current still can go to 100% RLA.
Phase Unbalance Limit	The compressor is running and its capacity is being limited by excessive phase current unbalance.
Low Discharge Super- heat Limit	This is limit control that acts to prevent chiller shutdown when the discharge superheat approaches the limit setpoint by increasing VFD frequency.
Oil Loss Avoidance	This limit control that acts to prevent chiller shutdown when measured refrigerant flow too low by increasing compressor capacity including increasing slide valve capacity and/ or VFD frequency.
High Motor Winding Temp Limit	This is limit control that acts to prevent chiller shutdown when the measured motor temp approaches limit setpoint by increasing compressor capacity.
Max CFM Limit	This is limit control that acts to prevent chiller shutdown when the estimated evaporator refrigerant flow approaches the calculated maximum flow by limiting maximum compressor capacity.
Low Water Temp Dif- ference Limit	This is limit control that acts to prevent too much refrigerant flow bypass from condens- er to compressor that will cause very low efficiency.

Seasonal Unit Start-Up Procedure

- 1. Close all valves and re-install the drain plugs in the evaporator and condenser heads.
- 2. Service the auxiliary equipment according to the start-up/maintenance instructions provided by the respective equipment manufacturers.
- 3. Vent and fill the cooling tower, if used, as well as the condenser and piping. At this point, all air must be removed from the system (including each pass). Close the vents in the evaporator chilled water circuits.
- 4. Open all the valves in the evaporator chilled water circuits.
- 5. If the evaporator was previously drained, vent and fill the evaporator and chilled water circuit. When all air is removed from the system (including each pass), install the vent plugs in the evaporator water boxes.

- 6. Check the adjustment and operation of each safety and operating control.
- 7. Close all disconnect switches.
- 8. Refer to the sequence for daily unit startup for the remainder of the seasonal startup.

Series	R Start-up Test Log
Job Name	Job Location
Model #	Serial # start date:
Sales Order # ship date:	Job elevation (ft. above sea level)
STARTER DATA:	START-UP ONLY
Manufacturer	Chiller appearance at arrival:
Туре:	Compressor shipping bolts removed? Y N
Vendor ID #/Model #:	Oil separator shipping bolts removed? Y N
Volts Amps Hz	Machine Gauge Pressure: psig/ kPag
COMPRESSOR DATA:	Machine Symbio800 Pressure: psig/ kPag
Model #:	Complete if pressure test is required
Serial #:	Vacuum after leak test= mm
NAMEPLATE DATA:	Standing vacuum test = mm rise in hrs
RLA KW Volts	UNIT CHARGES
50 60 Hz	Unit refrigerant charge: Ibs/ Kg
DESIGN DATA:	Unit Oil Charge: gal/ L
RLA KW Volts	
CURRENT TRANSFORMER	SUMMARY OF UNIT OPTIONS INSTALLED
Part Number ("X" code and 2-digit extension)	Y N Tracer Communications Interface
Primary CT's	Y N Options Module
x -	Y N Outdoor Air Sensor
x -	Y N Other
X -	
DESIGN CONDITIONS	
Evap Desig GPM L/S PSID kPac	Ent. Water F/C Leaving Water F/C
Evap Actual GPM L/S PSID kPac	Ent. Water F/C Leaving Water F/C
Cond Design GPM L/S PSID kPac	Ent. Water F/C Leaving Water F/C
Cond Actual GPM L/S PSID kPac	Ent. Water F/C Leaving Water F/C

Owner Witness Signature:

	Installation Checklist for Model RTHD Series R
То:	Trane Service Company
S.O. No.:	Serial No:
Job/Project Na	ame:
	RECEIVING
	Verify that the unit nameplate data corresponds to the ordering information.
	Inspect the unit for shipping damage and any shortages of materials. Report any damage or shortage to the carrier.
	UNIT LOCATION AND MOUNTING
	Inspect the location desired for installation and verify adequate service access clearances.
	Provide drainage for evaporator and condenser water.
	Remove and discard all shipping materials (cartons, etc.)
	Install optional spring or neoprene isolators, if required. Refer to IOM for details.
	Level unit and secure it to the mounting surface.
	UNIT PIPING
Caution:	If using an acidic commercial flushing solution, construct a temporary bypass around the unit to prevent damage to the internal components of the condenser and evaporator. To avoid possible equipment damage, do not use untreated or improperly treated system water.
	Flush all unit water piping before making final connections to unit.
	Connect water piping to the evaporator and condenser.
	Install pressure gauges and shutoff valves on the water inlet and outlet to the evap. and cond.
	Install water strainers in the entering chilled water and condenser water lines.
	Install balancing valves (discretionary) and flow switches in the leaving chilled and condenser water lines.
	Install drains with shutoff valves or drain plugs on the evaporator and condenser.
	Vent the chilled water and condenser water systems at the high points of the system piping.
	Pipe relief valves outdoors in accordance to ASHRAE 15, the IOM and local code.
	ELECTRICAL WIRING
	WARNING: To prevent injury or death, disconnect electrical power source before completing wiring connections on the unit.
	Check for tight connections for the unit power supply wiring with Unit-mounted circuit breaker in the power section of the control panel.
	Check for tight 115 volt control wiring connections to the chilled water pump and condenser water pump
	Check Interlock Wiring, including chilled water pump control, chilled water flow interlock, condenser water pump, condenser water flow interlock, external auto stop. For further details refer to the IOM or the unit wiring.
Caution:	Information on Interconnecting Wiring: Chilled Water Pump Interlock and External Auto/Stop must be adhered to or equipment damage may occur.
	If remote Alarm contacts, Limit Warning Contact, Outdoor Air Temperature Sensor, Emergency Stop, Head Relief Request Contact, Ice Making, External Chilled Water Setpoint, External Current Limit Setpoint, Percent Condenser Pressure output are used refer to the IOM and the unit wiring for further details.
	If with harmonic filter, check filter connection between control panel and filter panel. For further details refer to filter wiring section of IOM.
	Control power wiring isolated in control panel/starter panel enclosure.
	ls chilled water pump control by Symbio800 or Others (circle one)

Installation Checklist for Model RTHD Series R						
	PRE-START CHECK-OUT					
	visually check all drive wiring and connection in the drive to make sure they are tight and free of any shipping damage.					
	Inspect all other wiring connection. Connections should be clean and tight.					
	Check power wiring connection of drive line side (R,S,T) and load side (U,V,W) to make sure correct phase sequencing.					
	Check for good earth connection (ground connection) that are tight and free of oxidation. Indlude unit inside grounding and unit to building earth.					
	Check for correct motor power setting. Symbio800 motor power setting must same as drive setting.					
	Energize crankcase heaters. Heaters need to be energized 24 hours before start-up.					
	Confirm that all service and isolation valves are open. Refer to RTHD-SVX04K-EN.					
	Remove the four (1 on B Frame Compressors) compressor shipping stops (snubbers) from under the compressor.					
	Remove shipping bolts from under the two oil separators.					
	Check all water temperature sensors for proper installation and use of heat transfer paste.					
	Fill the chilled water circuit.					
Caution:	To prevent equipment damage, do not use untreated or improperly treated water in the system.					
	Fill the condensing water circuit.					
	Close the fused disconnect switch to supply power to the chilled water pump and condenser water pump starter.					
	Start the water pumps. With water pumps running, inspect all piping connections for leakage. Make any necessary repairs.					
	With water pumps running, adjust water flows and check water pressure drops through the evaporator and condenser.					
	Adjust the flow switches for proper operation.					
	Return pumps to the automatic mode.					
	Disable machine start circuit until start-up mechanic arrives. (use either the external stop or emergency stop circuit)					

Unit Shutdown

Normal Shutdown to Stopped

The Normal Shutdown diagram shows the Transition from Running through a Normal (friendly) Shutdown. The Dashed lines on the top attempt to show the final mode if you enter the stop via various inputs.

Figure 69. Normal Shutdown

Note: For variable vi compressor units, no unload solenoid valve cycle during the process of shutdown, and the unload solenoid valve shall be activated for 30 minutes after shutdown.

Seasonal Unit Shutdown

- 9. Perform the normal unit stop sequence using the <Stop> key.
- **Note:** Do not open the starter disconnect switch. This must remain closed to provide control power from the control power transformer to the oil sump heater.
- 10. Verify that the chilled water and condenser water pumps are cycled off. If desired, open the disconnect switches to the pumps.
- 11. Drain the condenser piping and cooling tower, if desired.
- 12. Remove the drain and vent plugs from the condenser headers to drain the condenser.
- 13. Verify that the Crank Case heater is working.
- 14. Once the unit is secured, perform the maintenance identified in the following sections.

Overview

This section describes preventative maintenance procedures and intervals for the Series R unit. Use a periodic maintenance program to ensure optimal performance and efficiency of the Series R units.

An important aspect of the chiller maintenance program is the regular completion of the "Series R Operating Log"; an example of this log is provided in this manual. When filled out properly the completed logs can be reviewed to identify any developing trends in the chiller's operating conditions.

For example, if the machine operator notices a gradual increase in condensing pressure during a month's time, he can systematically check for and then correct, the possible cause(s) of this condition (e.g., fouled condenser tubes, non-condensables in the system).

Weekly Maintenance and Checks

After the unit has operated for approximately 30 minutes and the system has stabilized, check the operating conditions and complete the procedures below:

- Log the chiller.
- Check evaporator and condenser pressures with gauges and compare to the reading on the Clear Language Display. Pressure readings should fall within the following ranges specified in the Operating Conditions.
- **Note:** Optimum condenser pressure is dependent on condenser water temperature, and should equal the saturation pressure of the refrigerant at a temperature 2 to 5°F above that of leaving condenser water at full load.

Monthly Maintenance and Checks

- Review operating log.
- Clean all water strainers in both the chilled and condensing water piping systems.
- Measure the oil filter pressure drop. Replace oil filter if required. Refer to "Service Procedures".
- · Measure and log the subcooling and superheat.
- If operating conditions indicate a refrigerant shortage, leak check the unitan confirm using soap bubbles.
- Repair all leaks.
- Trim refrigerant charge until the unit operates in the conditions listed in the note below.
- **Note:** ARI conditions are: condenser water: 85°F and 3 GPM per ton and evaporator water: 54-44°F.

Table 34. Operating Conditions at Full Load

Description	Condition
Evaporator pressure	40-55 psig
Condensing pressure	85-120 psig
Discharge superheat	17°F
Subcooling	5-10°F
EXV percent open	40-50% open in Auto mode

All conditions stated above are based on the unit running fully loaded, running at ARI conditions.

• If full load conditions can not be met. Refer to note below to trim the refrigerant charge.

Note: Conditions at minimum must be: entering condenser water: 85°F and entering evaporator water: 55°F.

Table 35	Operating	Conditions at	Minimum L	.oad
----------	-----------	----------------------	-----------	------

Description	Condition
Evaporator approach	*less than 7°F (non-glycol applications)
Condensing approach	*less than 7°F
Subcooling	2-3°F
EXV percent open	10-20 % open

* ≈ 1.0°F for new unit.

Annual Maintenance

Shut down the chiller once each year to check the following:

A WARNING

Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

- Perform all weekly and monthly maintenance procedures.
- Check the refrigerant charge and oil level (The oil used by AdaptiR[™] with AFD option chiller is OIL00315, RTHD variable volume ratio unit use OIL0067E, which is not same as RTHD chiller). Refer to "Maintenance Procedures". Routine oil changing is not necessary on a hermetic system.
- Have a qualified laboratory perform an oil analysis to determine system moisture content and acid level.

Note: Due to the hygroscopic properties of the POE oil, all oil must be stored in metal containers. The oil will absorb water if stored in a plastic container

- · Check the pressure drop across the oil filter. Refer to "Maintenance Procedures".
- Contact a qualified service organization to leak check the chiller, to inspect safety controls, and inspect electrical components for deficiencies.
- Inspect all piping components for leakage and/or damage. Clean out any inline strainers.
- Clean and repaint any areas that show signs of corrosion.
- Test vent piping of all relief valves for presence of refrigerant to detect improperly sealed relief valves. Replace any leaking relief valve.
- Inspect the condenser tubes for fouling; clean if necessary. Refer to "Maintenance Procedures".
- Check to make sure that the crank case heater is working.

Scheduling Other Maintenance

- Use a nondestructive tube test to inspect the condenser and evaporator tubes at 3-year intervals.
- **Note:** It may be desirable to perform tube tests on these components at more frequent intervals, depending upon chiller application. This is especially true of critical process equipment.
- Depending on chiller duty, contact a qualified service organization to determine when to conduct a complete examination of the unit to determine the condition of the compressor and internal components.

Operating Log

A sample of several operating logs and checklists have been included.

Periodic Maintenance

Chiller Log					
Main Tab		Run Time			
	15 min	30 min	1 hr		
Chiller Mode					
Evap Ent/Lvg Water Temp					
Cond Ent/Lvg Water Temp					
Active Chilled Water Setpoint (F)					
Active Current Limit Setpoint (%RLA)					
Software Type					
Software Version					
Reports Tab	•	·	·		
	Evaporator				
Evap Entering Water Temperature (F)					
Evap Leaving Water Temperature (F)					
Evap Sat Rfgt Temp (F)					
Evap Rfgt Pressure (psia)					
Evap Approach Temp (F)					
Evap Water Flow Switch Status					
Expansion Valve Position (%)					
Expansion Valve Position Steps					
Evap Rfgt Liquid Level (in)					
	Condenser				
Cond Entering Water Temperature (F)					
Cond Leaving Water Temperature (F)					
Cond Sat Rfgt Temp (F)					
Cond Rfgt Pressure (psia)					
Cond Approach Temp (F)					
Cond Water Flow Switch Status					
Cond Head Pressure Ctrl Command (%)					
	Compressor				
Compressor Starts					
Compressor Run Time					
System Rfgt Diff Pressure (psid)					
Oil Pressure (psia)					
Compressor rfgt Discharge Temp (F)					
Discharge Superheat (F)					
	AFD				
AFD Output Power					
Frequency Command					

Sett	Settings			
Settings Tab				
Ch	iller			
Front Panel Chilled Water Setpt (F)				
Front Panel Current Limit Setpt (RLA)				
Differential to Start (F)				
Differential to Stop (F)				
Setpoint Source				
Feature	Settings			
Chilled Water Reset				
Return Reset Ratio				
Return Start Reset				
Return Maximum Reset				
Outdoor Reset Ratio				
Outdoor Start Reset				
Outdoor Maximum Reset				
Mode C	verrides			
Evap Water Pump				
Cond Water Pump				
Expansion Valve Control				
Slide Valve Control				
Service Pumpdown				
AFD Control				
Display	Settings			
Date Format				
Date				
Time Format				
Time of Day				
Keypad/Display Lockout				
Display Units				
Pressure Units				
Language Selection				

Maintenance Procedures

Cleaning the Condenser

Proper Water Treatment!

The use of untreated or improperly treated water in a AdaptiR[™] with AFD option may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. The Trane Company assumes no responsibility for equipment failures which result from untreated or improperly treated water, saline or brackish water.

Condenser tube fouling is suspect when the "approach" temperature (i.e., the difference between the refrigerant condensing temperature and the leaving condenser water temperature) is higher than predicted.

Standard water applications will operate with less than a 10oF approach. If the approach exceeds 10oF cleaning the condenser tubes is recommended.

If the annual condenser tube inspection indicates that the tubes are fouled, 2 cleaning methods can be used to rid the tubes of contaminants.The methods are:

Mechanical Cleaning Procedure

Mechanical tube cleaning this method is used to remove sludge and loose material from smoothbore condenser tubes.

- 15. Remove the retaining bolts from the water boxes at each end of the condenser. Use a hoist to lift the water boxes.
- 16. Work a round nylon or brass bristled brush (attached to a rod) in and out of each of the condenser water tubes to loosen the sludge.
- 17. Thoroughly flush the condenser water tubes with clean water.

(To clean internally enhanced tubes, use a bi-directional brush or consult a qualified service organization for recommendations.)

Chemical Cleaning Procedure

 Scale deposits are best removed by chemical means. Consult a qualified water treatment specialist (i.e., one that knows the local water supply chemical/mineral content) for a recommended cleaning solution suitable for the job. (A standard condenser water circuit is composed solely of copper, cast iron and steel.) Improper chemical cleaning can damage tube walls.

All of the materials used in the external circulation system, the quantity of the solution, the duration of the cleaning period, and any required safety precautions should be approved by the company furnishing the materials or performing the cleaning.

Note: Chemical tube cleaning should always be followed by mechanical tube cleaning.

Cleaning the Evaporator

Since the evaporator is typically part of a closed circuit, it does not accumulate appreciable amounts of scale or sludge. However, if cleaning is deemed necessary, use the same cleaning methods described for the condenser tubes.

Compressor Oil

Equipment Damage!

To prevent oil sump heater burnout, open the unit main power disconnect switch before removing oil from the compressor.

Trane Polyolester Oil is the approved oil for the AdaptiR[™] with AFD option units. Polyolester oil is extremely hygroscopic meaning it readily attracts moisture. The oil can not be stored in plastic containers due to the hygroscopic properties. As with mineral oil, if water is in the system it will react with the oil to form acids. Use Table 36 to determine the acceptability of the oil.

Table 36. POE Oil Properties

Description	Acceptable Levels
Moisture content	less than 300 ppm
Acid Level	Oil00048 new sample<0.05TAN(mg KOH/g)
	Oil00315/Oil00317 new sample<0.1TAN(mg KOH/g)
	Oil0067E new sample<0.1TAN(mg KOH/g)

Mineral oil used in the RTHA and RTHB units had different acceptable levels (<50 ppm of moisture and < 0.05 mg KOH/g)

Note: Use an oil transfer pump to change the oil regardless of chiller pressure.

Oil Sump Level Check

The oil level in the oil sump can be measured to give an indication of the system oil charge. Follow the procedures below to measure the level.

- 1. Run the unit fully loaded for approximately 20 minutes (Keep leaving evaporator water temperature lower than 48°F, entering condenser water temperature higher than 75°F).
- **Note:** Operating the unit at minimum load tends to lower oil sump levels to as low as 2", well below the normal 4.5" to 6.0" levels. This is because the evaporator tends to hold more oil at minimum load conditions. Before adding any oil, obtain an oil level reading near a full load operating condition.
- 2. Cycle the compressor off line.

▲ CAUTION

Oil Loss!

Never operate the compressor with the sightglass service valves opened. Severe oil loss will occur. Close the valves after checking the oil level. The sump is above the condenser and it is possible to drain the oil.

3. Attach a 3/8" or 1/2" hose with a sightglass in the middle to the oil sump drain valve and the condenser service valve at the top of the condenser.

Using high pressure rated clear hose with appropriate fittings can help speed up the process.

- 4. After the unit is off line for 10 minutes, move the sightglass along the side of the oil sump.
- 5. The level should be between 2" and 5" from the bottom of the oil sump. If the level appears to be above 8", the oil sump is completely full. Most likely more oil resides in the rest of the system and some oil needs to be removed until the level falls between 2" and 5" in the oil sump.
- 6. If the level is below 2", there is not enough oil in the sump. This can occur from not enough oil in the system or more likely, oil migration to the evaporator. Oil migration can occur from a low refrigerant charge, gas pump malfunction, etc.
- **Note:** If the oil is logged in the evaporator confirm the operation of the gas pump. If the gas pump is not functioning properly all oil will be logged in the evaporator.
- 7. After the level is determined, close the service valves and remove the hose/sightglass assembly.

Removing Compressor Oil

The oil in the compressor oil sump is under a constant positive pressure at ambient temperature. To remove oil, open the service valve located on the bottom of the oil sump and drain the oil into a suitable container using the procedure outlined below:

POE Oil!

Due to the hygroscopic properties of the POE oil, all oil must be stored in metal containers. The oil will absorb water if stored in a plastic container.

Oil should not be removed until the refrigerant is isolated or removed.

- 8. Connect a line to the oil sump drain valve.
- 9. Open the valve and allow the desired amount of oil to flow into the container and close the charging valve.
- 10. Measure the exact amount of oil removed from the unit.

Oil Charging Procedure

It is critical to fill the oil lines feeding the compressor when charging a system with oil. The diagnostic "Loss of oil at the compressor stopped" will be generated if the oil lines are not full on start-up.

To properly charge the system with oil, follow the steps below:

- 1. Locate the 1/4" schrader valve between the ball valve and oil filter (or the ball valve and oil cooler, if so equipped).
- 2. Loosely connect oil pump to schrader valve called out in step 1.
- 3. Operate oil charging pump until oil appears at the charging valve connection; then tighten the connection.

Note: To keep air from entering the oil, the charging valve connection must be air- tight.

- Close the ball valve just upstream of the schrader valve connected to the oil pump. This will allow the oil to travel through the oil lines to the compressor first rather than directly to the oil sump.
- 5. Energize the master oil solenoid.
- 6. This will allow the oil to travel from the schrader to the compressor. It takes approximately 2 gallons of oil to fill the lines.
- 7. After charging the first 2 gallons, de-energize the master solenoid.
- 8. Open the ball valve just upstream of the schrader connected to the oil pump. This will allow the remainder of the charge to flow to the oil sump.
- 9. Monitor the "Oil Loss Level Sensor Status in Tracer TU under the Status view. This display shows whether the optical sensor is seeing oil (wet) or if it is not (dry).
- **Note:** The remainder of the oil charge can be charged into the 1/4" service valve located at the bottom of the sump if a larger connection is preferred.

Replacing the Main Oil Filter (Hot Filter)

The filter element should be changed if the oil flow is sufficiently obstructed. Two things can happen: first, the chiller may shut down on a "Low Oil Flow" diagnostic, or secondly, the compressor may shut down on a "Loss of Oil at Compressor (Running) diagnostic. If either of these diagnostics occurs, it is possible the oil filter needs replacement. The oil filter is not usually the cause of a Loss of oil at Compressor diagnostic.

Specifically, the filter must be changed if the pressure drop between the two service valves in the lubrication circuit exceeds the maximum level as given in Figure 71. This chart shows the relationship between the pressure drop measured in the lubrication circuit as compared with operating pressure differential of the chiller (as measured by pressures in the condenser and evaporator).

Normal pressure drops between the service valves of the lubrication circuit are shown by the lower curve. The upper curve represents the maximum allowable pressure drop and indicates when the oil filter must be changed. Pressure drops that lie between the lower and upper curves are considered acceptable.

For a chiller equipped with an oil cooler, add 5 psid to the values shown in Figure 71. For example, if the system pressure differential was 80 psid, then the clean filter pressure drop would be approximately 15 psid (up from 10 psid). For a chiller with an oil cooler and operating with a dirty oil filter, the maximum allowable pressure drop would be 28 psid (up from 23 psid).

Under normal operating conditions the element should be replaced after the first year of operation and then as needed thereafter.

Refer to Table 4 - Table 7 and Unit nameplate for Oil charge information.

- 1. Isolate the oil filter by closing the two ball valves located before and after the filter.
- 2. Relieve the pressure from the hydraulic line through the 1/4" schrader valve located between

Maintenance Procedures

the ball valve and the oil filter (or the ball valve and oil cooler, if so equipped).

- 3. Use a strap wrench to break loose the nut that secures the oil filter element to the filter manifold.
- 4. Turn the nut clockwise until the filter element detaches from the manifold.
- 5. Remove the filter element and measure the exact amount of oil contained in the filter bowl and element.
- 6. Place the cartridge in the nut after filling the bowl with the proper amount of refrigerant oil (see Step 5). Turn the new nut assembly counterclockwise and tighten securely.
- 7. Connect manifold gauge set at oil charging valve and evacuate the filter to 500 microns.
- 8. Charge the oil line back with the amount of oil removed. Open the isolation valves to the oil supply system.

Replacing the Gas Pump/Thermosyphon Oil Filter

The filter element in the gas pump/Thermosyphon circuit may need to be changed if the gas pump/Thermosyphon device is unable to return the oil to the compressor.

An evaporator logged with oil will have a high liquid level when referring to the liquid level sensor, low suction pressures, and higher than normal approach on the evaporator.

Refer to Figure 71 to determine if the pressure drop across the filter is above the normal range at full load conditions. Once the oil is logged in the evaporator, it may be necessary to manually move the oil from the evaporator to the oil sump to avoid losses in the main oil lines.

Refrigerant Charge

If a low refrigerant charge is suspected, first determine the cause of lost refrigerant. Once the problem is repaired follow the procedures below for evacuating and charging the unit.

Evacuation and Dehydration

- 1. Disconnect ALL power before/during evacuation.
- 2. Connect the vacuum pump to the 5/8" flare connection on the bottom of the evaporator and/ or condenser.
- 3. To remove all of the moisture from the system and to insure a leak free unit, pull the system down below 500 microns.
- 4. After the unit is evacuated, perform a standing rise test for at least an hour. The pressure should not rise more than 150 microns. If the pressures rises more than 150 microns, either a

leak is present or moisture is still in the system.

Note: If oil is in the system, this test is more difficult. The oil is aromatic and will give off vapors that will raise the pressure of the system.

Refrigerant Charging

Once the system is deemed leak and moisture free, use the 5/8" flare connections at the bottom of the evaporator and condenser to add refrigerant charge.

Refer to Table 4 - Table 7 and Unit nameplate for Refrigerant charge information.

The following diagnostic Table contains all the diagnostics possible. Not all data is available unless Trace TU is installed.

Hex Code: 3 digit hexadecimal code used on all past products to uniquely identify diagnostics.

Diagnostic Name and Source: Name of diagnostic and its source. Note that this is the exact text used in the User Interface and/or Service Tool displays.

Severity: Defines the severity of the above effect. Immediate means immediate shutdown of the effected portion, Normal means normal or friendly shutdown of the effected portion, Special Mode means a special mode of operation (limp along) is invoked, but without shutdown, and Info means an Informational Note or Warning is generated.

Persistence: Defines whether or not the diagnostic and its effects are to be manually reset (Latched), or can be either manually or automatically reset (Nonlatched).

Criteria: Quantitatively defines the criteria used in generating the diagnostic and, if nonlatching, the criteria for auto reset. If more explanation is necessary a hot link to the Functional Specification is used.

Reset Level: Defines the lowest level of manual diagnostic reset command which can clear the diagnostic. The manual diagnostic reset levels in order of

Priority are: Local and Remote. A diagnostic that has a reset level of Local, can only be reset by a local diagnostic reset command, but not by the lower priority remote Reset command whereas a diagnostic listed as Remote reset can be reset by either.

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
E5	Phase Reversal	Immediate	Latch	A phase reversal was detected on the incoming current. On a compressor startup the phase reversal logic must detect and trip in a maximum of 0.3 second from compressor start.	Local
188	Starter Dry Run Test	Immediate	Latch	While in the Starter Dry Run Mode either 50 % Line Voltage was sensed at the Potential Transformers or 10 % RLA Current was sensed at the Current Transformers.	Local
E4	Phase Loss	Immediate	Latch	a) No current was sensed on one or two of the current transform- er inputs while running or starting (See Nonlatching Power Loss Diagnostic for all three phases lost while running). Must hold = 20% RLA. Must trip = 5% RLA. Time to trip shall be longer than guaranteed reset on Starter Module at a minimum, 3 seconds maximum. Actual design trippoint is 10%. The actual design trip time is 2.64 seconds. b) If Phase reversal protection is enabled and current is not sensed on one or more current xformer inputs. Logic will detect and trip in a maximum of 0.3 second from com- pressor start.	Local
E2	Momentary Power Loss	Immediate	Nonlatch	Momentary Power Loss option disabled: No effect. Momentary Power Loss option enabled: A loss of power on three line cycles or more was detected. Diagnostic is reset in 30 seconds.	Remote
1A0	Power Loss	Immediate	NonLatch	The compressor had previously established currents while running and then all three phases of current were lost. Design: Less than 10% RLA, trip in 2.64 seconds. This diagnostic will preclude the Phase Loss Diagnostic and the Transition Complete Input Opened Diagnostic from being called out. To prevent this diagnostic from occurring with the intended disconnect of main power, the mini- mum time to trip must be greater than the guaranteed reset time of the Starter module. Note: This diagnostic prevents nuisance latching diagnostics due to a momentary power loss – It does not protect motor/compressor from uncontrolled power reapplication. See Momentary Power Loss Diagnostic for this protection. This diagnostic will auto reset in 10 seconds from its occurrence, and is not active during the start mode before the transition complete input is proven. This prevents the chiller from cycling due to some internal starter problem, as the starter Did Not Transition" latching diagnostic. However true power loss occurring during a start would result in a misdiagnosis and the chiller would not automatically recover.	Remote
E3	Severe Current Im- balance	Normal	Latch	A 30% current imbalance has been detected on one phase rela- tive to the average of all 3 phases for 90 continuous seconds.	Local

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
1E9	Starter Fault Type I	Immediate	Latch	This is a specific starter test where 1M(1K1) is closed first and a check is made to ensure that there are no currents detected by the CT's. If currents are detected when only 1M is closed first at start, then one of the other contactors is shorted.	Local
1ED	Starter Fault Type II	Immediate	Latch	a. This is a specific starter test where the Shorting Contactor (1K3) is individually energized and a check is made to ensure that there are no currents detected by the CT's. If current is detected when only S is energized at Start, then 1M is shorted. b. This test in a. above applies to all forms of starters (Note: It is understood that many starters do not connect to the Shorting Contactor.).	Local
1F1	Starter Fault Type III	Immediate	Latch	As part of the normal start sequence to apply power to the compressor, the Shorting Contactor (1K3) and then the Main Contactor (1K1) were energized. 1.6 seconds later there were no currents detected by the CT's for the last 1.2 seconds on all three phases. The test above applies to all forms of starters except Adaptive Frequency Drives.	Local
2BD	AFD Drive Fault	Immediate	Latch	The AFD Drive Fault Relay is open	Local
1F5	Compressor Did Not Accelerate Fully	Immediate	Latch	The starter module did not receive an "Up to Speed" or "End of Ramp" signal from the SSS within 2.5 seconds after commanding a bypass, or after the maximum acceleration time had expired, whichever is longer. This diagnostic only applies to SSS/AFD.	Local
1FA	Compressor Did Not Accel: Transition	Info	Latch	The compressor did not come up to speed (get to <85%RLA) in the allotted time defined by the Maximum Acceleration Timer and a transition was forced (motor put across the line) at that time. This applies to all starter types. Note: Since RTHD SSS has no forced transition capability, this info warning can be followed with a "Compressor did not accelerate fully" diagnostic above and an aborted start.	Remote
EE	Compressor Did Not Accelerate: Shut- down	Immediate	Latch	The compressor did not come up to speed (get to <85%RLA) in the allotted time defined by the Maximum Acceleration Timer and and the start was aborted per the starter configuration selected.	Remote
3D5	Transition Complete Input Shorted	Immediate	Latch	The Transition Complete input is shorted before the compressor was started. This is active for all electromechanical starters.	Local
3D6	At Speed Input Shorted	Immediate	Latch	The "At Speed" input is shorted before the compressor was start- ed. This is active for solid state starters and AFD.	Local
3D7	Transition Complete Input Opened	Immediate	Latch	The Transition Complete input is open with the compressor motor running after a successful completion of transition. This is active only for all electromechanical starters	Local
3D8	At Speed Input Opened	Immediate	Latch	The "At Speed" input was found to be opened with the compres- sor motor running after successfully obtaining an at speed and bypassed condition. This is active for solid state starters and AFD	Local
EC	Motor Current Over- load	Immediate	Latch	Compressor current exceeded overload time vs. trip characteris- tic. For A/C products Must trip = 140% RLA, Must hold=125%, nominal trip 132.5% in 30 seconds	Local
CA	Starter Contactor Interrupt Failure	Immediateand Special Action	Latch	Detected compressor currents greater than 10% RLA on any or all phases when the compressor was commanded off. Detection time shall be 5 seconds minimum and 10 seconds maximum. On detection and until the controller is manually reset: generate diagnostic, energize the appropriate alarm relay, continue to en- ergize the Evap and Cond Pump Outputs, continue to command the affected compressor off, fully unload the effected compres- sor. For as long as current continues, perform liquid level and oil return gas pump control	Local
D7	Over Voltage	Normal	NonLatch	a. Average of all monitored Line voltages above + 10% of nom- inal. [Must hold = + 10 % of nominal. Must trip = + 15 % of nominal. Reset differential = min. of 2% and max. of 4%. Time to trip = minimum of 1 min. and maximum of 5 min.) Design: Nom. trip: 60 seconds at greater than 112.5%, + or - 2.5%, Auto Reset at 109% or less.	Remote
D8	Under Voltage	Normal	NonLatch	a. Average of all monitored Line voltages below - 10% of nominal or the Under/Overvoltage transformer(s) are not connected. [Must hold = - 10% of nominal. Must trip = - 15% of nominal. Reset differential = min. of 2% and max. of 4%. Time to trip = min. of 1 min. and max. of 5 min.) Design: Nom. trip: 60 seconds at less than 87.5%, + or - 2.8% at 200V or + or - 1.8% at 575V, Auto Reset at 90% or greater.	Remote

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
D9	MP: Reset Has Oc- curred	Info	NonLatch	The main processor has successfully come out of a reset and built its application. A reset may have been due to a power up, in- stalling new software or configuration. This diagnostic is immedi- ately and automatically cleared and thus can only be seen in the Historic Diagnostic List	Remote
6B5	Unexpected Starter Shutdown	Normal	Nonlatch	The Starter module status reported back that it is stopped when it should be running and no Starter diagnostic exists. This diag- nostic will be logged in the active buffer and then cleared.	NA
FB	Low Evaporator Refrigerant Tempera- ture	Immediate	Latch	a. The inferred Saturated Evap Refrigerant Temperature (calculat- ed from suction pressure transducer(s)) dropped below the Low Refrigerant Temperature Cutout Setpoint for 450°F-sec (10°F-sec max rate) while the circuit was running after the ignore period had expired. The integral is held at zero for the 1 minute ignore time following the circuit startup and the integral will be limited to never trip in less than 45 seconds, i.e. the error term shall be clamped to 10°F. The minimum LRTC setpoint is -5°F (18.7 Psia) the point at which oil separates from the refrigerant. b. During the timeout of the trip integral, the unload solenoid(s) of the run- ning compressors on the circuit, shall be energized continuously and the load solenoid shall be off. Normal load/unload operation will be resumed if the trip integral is reset by return to temps above the cutout setpoint.	Remote
198	Low Oil Flow	Immediate	Latch	The oil pressure was out of the acceptable pressure range for 15 seconds, while the Delta Pressure was greater than 15 Psid.: Acceptable range is $0.50 \text{ or } 0.60 > (PC-Po) / (PC-PE)$ for the first 2.5 minutes of operation, and $0.40 \text{ or } 0.50 > (PC-Po) / (PC-PE)$ thereafter. The higher ratios used if the system DP is less than 23 psid	Local
59C	Loss of Oil at Com- pressor (Running)	Immediate	Latch	In running modes , Oil Loss Level Sensor detects lack of oil in the oil tank feeding the compressor (distinguishing a liquid flow from a vapor flow)	Local
59D	Loss of Oil at Com- pressor (Stopped)	Immediate and Special Action	Latch	Oil Loss Level Sensor detects a lack of oil in the oil tank feeding the compressor for 90 seconds after EXV preposition is complet- ed. Note: Compressor start is delayed while waiting for oil to be detected.	Local
1AE	Low Differential Re- frigerant Pressure	Immediate	Latch	The system differential pressure was either below 15 Psid for more than 164 Psid-sec, or below 23.0 Psid for 3000 Psid-sec. The latter integral's value is not cleared for any reason including diagnostic trip, manual reset, or power up reset (ie. Integral is saved nonvolatily on power down). The integral will decay while circuit is running at a max rate of -10 PSID, and while stopped at a rate of -0.4 PSID. This same integral is associated with the op- erating mode "Compressor Cool Down". Also see diagnostic below	Remote
297	No Differential Re- frigerant Pressure	Immediate	Latch	The system differential pressure was below 7.7 Psid. The occur- rence of this diagnostic will saturate the above "Low Diff Rfgt Press" Integral and invoke the same "Compressor Cool Down" op mode.	Remote
1C6	High Differential Refrigerant Pressure	Normal	Latch	a. The system differential pressure was above 160 Psid- trip im- mediately (normal shutdown)	Remote
1C6	High Refrigerant Pressure Ratio	Immediate	Latch	B The diff pressure was above 152 Psid - trip in 1 hour The system pressure ratio exceeded 5.61 for 1 contiguous min- ute. This pressure ratio is a fundamental limitation of the com- pressor. The pressure ratio is defined as Pcond (abs)/Pevap(abs).	Remote
1C2	High CprsrRfgt Dis- charge Temperature	Immediate	Latch	The compressor discharge temperature exceeded 190°F. This diagnostic will be suppressed if it occurs during the compressor run-unload period or after the compressor has stopped, but a run unload will be terminated early as a result. Note: As part of the Compressor High Temperature Limit Mode (aka Minimum Capacity Limit), the compressor shall be forced loaded as the filtered discharge temperature nears this trip-point.	Remote
18E	Low Discharge Su- perheat	Normal	Latch	While Running Normally, the Discharge Superheat was less than 12 degrees F +- 1F for more than 6500 degree F seconds At startup the UCM shall ignore the Discharge Superheat for 5 min- utes.	Remote
284	Compressor Dis- charge Temperature Sensor	Immediate	Latch	Bad Sensor or LLID	Remote
27D	Evaporator Liquid Level Sensor	Normal	Latch	Bad Sensor or LLID	Remote

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
390	BAS Failed to Estab- lish Communication	Special	NonLatch	The BAS was setup as "installed" and the BAS did not commu- nicate with the MP within 15 minutes after power-up. Refer to Section on Setpoint Arbitration to determine how setpoints and operating modes may be effected. Note: The original require- ment for this was 2 minutes, but was implemented at 15 minutes for RTAC.	Remote
398	BAS Communication Lost	Special	NonLatch	The BAS was setup as "installed" at the MP and the Comm 3 llid lost communications with the BAS for 15 contiguous min- utes after it had been established. Refer to Section on Setpoint Arbitration to determine how setpoints and operating modes may be effected by the comm loss. The chiller follows the value of the Tracer Default Run Command which can be previously written by Tracer and stored nonvolatilely by the MP (either use local or shutdown).	Remote
583	Low Evaporator Liq- uid Level	Info	NonLatch	The liquid level sensor is seen to be at or near its low end of range for 80 contiguous minutes while the compressor is running. Design: 20% or less of bit count corresponding to -21.2 mm or less liquid level for 80 minutes)	Remote
584	High Evaporator Liquid Level	Normal	Latch	The liquid level sensor is seen to be at or near its high end of range for 80 contiguous minutes while the compressor is running. (The diagnostic timer will hold, but not clear when the circuit is off). Design: 80% or more of bit count corresponding to +21.2 mm or more liquid level for 80 minutes)	
87	External Chilled/Hot Water Setpoint	Info	NonLatch	a. Function Not "Enabled": no diagnostics. b. "Enabled ": Out-Of- Range Low or Hi or bad LLID, set diagnostic, default CWS to next level of priority (e.g. Front Panel SetPoint). This Info diagnostic will automatically reset if the input returns to the normal range.	
89	External Current Limit Setpoint	Info	NonLatch	a. Not "Enabled": no diagnostics. b. "Enabled ": Out-Of-Range Low or Hi or bad LLID, set diagnostic, default CLS to next level of priority (e.g. Front Panel SetPoint. This Info diagnostic will automatically reset if the input returns to the normal range.	Remote
2BE	AFD output power input	Info	NonLatch	Out-Of-Range Low or Hi or bad LLID, set diagnostic, This Info di- agnostic will automatically reset if the input returns to the normal range.	Remote
4C4	External Base Load- ing Setpoint	Info and	NonLatch	a. Not "Enabled": no diagnostics. b. "Enabled ": Out-Of-Range Low or Hi or bad LLID, set diagnostic, default BLS to next level of priority (e.g. Front Panel SetPoint. This Info diagnostic will automatically reset if the input returns to the normal range.	Remote
8A	Evap Water Flow (Entering Water Temp)	Info	NonLatch	The entering evaporator water temp fell below the leaving evap- orator water temp. by more than 2°F for 100 °F-sec. For falling film evaporators this diagnostic cannot reliably indicate loss of flow, but can warn of improper flow direction through the evapo- rator, misbound temperature sensors, or other system problems	
8E	Evaporator Entering Water Temp Sensor	Info and	Latch	Bad Sensor or LLID Normal operation unless CHW Reset is en- abled. If CHW Reset is enabled and either Return or Constant Return Chilled Water Reset is selected, its effect will be removed but slew rates on the change will be limited per the Chilled Water Reset spec.	Remote
AB	Evaporator Leaving Water Temp Sensor	Normal	Latch	Bad Sensor or LLID	Remote
9A	Condenser Entering Water Temp Sensor	Info and Spe- cial Action	Latch	Bad Sensor or LLID. If chiller running, and condenser water regulating valve option installed, force valve to 100% flow.	Remote
9B	Condenser Leaving Water Temp Sensor	Info	Latch	Bad Sensor or LLID	Remote
5B8	Condenser Rfgt Pres- sure Transducer	Normal	Latch	Bad Sensor or LLID	Remote
5BA	Evaporator Rfgt Pressure Transducer	Normal	Latch	Bad Sensor or LLID	Remote
5BE	Oil Pressure Trans- ducer	Normal	Latch	Bad Sensor or LLID	Remote
2E6	Oil Flow Protection Fault	Immediate	Latch	The Oil Pressure Transducer for this Chiller is reading a pressure either above its Condenser Pressure by 15 Psia or more, or below its Evaporator Pressure 10 Psia or more for 30 seconds continu- ously.	Local

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
B5	Low Evaporator Re- frigerant Pressure	Immediate	Latch	The Evaporator Refrigerant Pressure dropped below 10 psia just prior to compressor start. The pressure fell below 10 psia while running but before the 3 minute ignore time had expired or fell below 16 Psia after the 3 minute ignore time had expired.	Local
6B3	Low Evaporator Temp: Unit Off	Info and Spe- cial Action	NonLatch	The evap sat temp fell below the water temp cutout setting while the respective evap liquid level was greater than -21.2 mm for 30 (or 150 begining with rev 08) degree F seconds while Chiller is in the Stop mode, or in Auto mode with no compressors running. Energize Evap Water pump Relay until diagnostic auto resets, then return to normal evap pump control. Automatic reset occurs when either the evap temp rises 2°F (1.1°C) above the cutout setting or the liquid level falls below -21.2 mm for 30 minutes	Remote
F5	High Pressure Cutout	Immediate	Latch	A high pressure cutout was detected; C.O. on rise @ 180 psig, reset @ 135 psig (+/-5 psi on switching tolerance) Note: Pres- sure relief valve is 200 Psig +- 2% trip at 315 ± 5 psi. Note: Other diagnostics that may occur as an expected consequence of the HPC trip will be suppressed from annunciation. These include Phase Loss, Power Loss, and Transition Complete Input Open.	Local
FD	Emergency Stop	Immediate	Latch	a. EMERGENCY STOP input is open. An external interlock has tripped. Time to trip from input opening to unit stop shall be 0.1 to 1.0 seconds.	Local
A1	Outdoor Air Tem- perature Sensor	Info and Spe- cial Action	Latch	Bad Sensor or LLID. This diagnostic will only occur if OA sensor is configured.OA Chilled water reset will be suspended if selected and Tracer OA unavailable.	Remote
2F2	Refrigerant Monitor Input	Info	NonLatch	Open or Shorted input and the Rfgt Monitor is setup as installed	Remote
5C5	Starter Module Mem- ory Error Type 1	Info	Latch	Checksum on RAM copy of the Starter LLID configuration failed. Configuration recalled from EEPROM.	Local
5C9	Starter Module Mem- ory Error Type 2 -	Immediate	Latch	Checksum on EEPROM copy of the Starter LLID configuration failed. Factor default values used.	Local
5FF	MP: Invalid Configu- ration	Immediate	Latch	MP has an invalid configuration based on the current software installed	Remote
69C	MP: Non-Volatile Memory Reformat	Info	Latch	MP has determined there was an error in a sector of the Non-Vol- atile memory and it was reformatted. Check settings.	Remote
2E6	Check Clock	Info	Latch	The real time clock had detected loss of its oscillator at some time in the past. Check / replace battery? This diagnostic can be effectively cleared only by writing a new value to the chiller's time clock using the TU or TD7 "set chiller time" functions.	Remote
6A1	MP: Could not Store Starts and Hours	Info	Latch	MP has determined there was an error with the previous power down store. Starts and Hours may have been lost for the last 24 hours.	Remote
6A2	MP: Non-Volatile Block Test Error	Info	Latch	MP has determined there was an error with a block in the Non-Volatile memory. Check settings.	Remote
6A3	Starter Failed to Arm/Start	Info	Latch	Starter failed to arm or start within the allotted time (15 sec- onds).	Remote
28C	Restart Inhibit	Info	NonLatch	The Restart Inhibit was invoked on a compressor. This indicates excessive chiller cycling which should be corrected.	Remote
03E	LCI-C Software Mis- match: Use BAS Tool	info	NonLatch	The neuron software in the LCI-C module does not match the chiller type. Download the proper software into the LCI-C neuron. To do this, use the Rover service tool, or a LonTalk® tool capable of downloading software to a Neuron 3150®.	Remote
83F	Software Error Num- ber: 1001 Call Trane Service	Immediate	Latch – power down reset is reqd	A high level software watchdog has detected a condition in which there was a continuous 5 minute period of compressor operation, with neither chilled water flow nor a" contactor interrupt failure" diagnostic active. The occurrence of this software error mes- sage suggests an internal software state chart misalignment has occurred. The events that led up to this failure, if known, should be recorded and transmitted to Trane Controls Engineering – (SW rev 6 and higher)	local
5D1	Comm Loss: Slide Valve Unload	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5D2	Comm Loss:Slide Valve Load	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5DD	Comm Loss:External Auto/Stop	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5DE	Comm Loss:Emer- gency Stop	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
5E2	Comm Loss:Outdoor Air Temperature	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. Note that if this diagnostic occurs, Chiller shall remove any OA Chilled Water Reset, if it was in effect and if Tracer OA was unavailable. Apply slew rates per Chilled Water Reset spec	Remote
5E3	Comm Loss: Evap Leaving Water Temp	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5E4	Comm Loss: Evap Entering Water Temp	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. Chiller shall remove any Return or Constant Return Chilled Water Reset, if it was in effect. Apply slew rates per Chilled Water Reset spec.	Remote
6B6	Comm Loss: Con- denser Leaving Water Temp	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Con- denser Entering Water Temp	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. If chiller running, and condenser water regulating valve option installed, force valve to 100% flow.	Remote
6B6	Comm Loss: Cprsr Discharge Rfgt Temp	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5E9	Comm Loss: Ext Chilled/Hot Water Setpoint	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. Chiller shall discontinue use of the External Chilled Water Setpoint source and revert to the next higher priority for setpoint arbitration	Remote
5EA	Comm Loss: Ext Cur- rent Limit Setpoint	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. Chiller shall dis- continue use of the External Current limit setpoint and revert to the next higher priority for Current Limit setpoint arbitration	Remote
5EB	Comm Loss:High Pressure Cutout Switch	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5EF	Comm Loss: Evap- orator Water Flow Switch	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Con- denser Water Flow Switch	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5F0	Comm Loss:Evapo- rator Rfgt Pressure	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5F2	Comm Loss:Con- denser Rfgt Pressure	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5F4	Comm Loss:Oil Pres- sure	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Oil Re- turn Gas Pump Fill	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Oil Re- turn Gas Pump Drain	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Oil Loss Level Sensor Input	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Master Oil Line SV	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5F8	Comm Loss: Evap- orator Water Pump Relay	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Con- denser Water Pump Relay	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: SSS/ AFD Fault	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Refrig- erant Monitor Input	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
6B6	Comm Loss: Ext Base Loading Set- point	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. The external base load setpoint input is removed from the arbitration to establish the Base LoadingSetpoint.	Remote
6B6	Comm Loss: Ext Base Loading Com- mand	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. The external base load input is removed from the arbitration to enable Base Load- ing.	Remote
688	Comm Loss:Evapora- tor Rfgt Liquid Level	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
690	Comm Loss:Starter	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Local
694	Comm Loss: Elec- tronic Expansion Valve 1	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
695	Comm Loss: Elec- tronic Expansion Valve 2	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
5CD	Starter Comm Loss: Main Processor	Immediate	Latch	Starter has had a loss of communication with the MP for a 15 second period.	Local
69D	Comm Loss: Local BAS Interface	Info and Spe- cial Action	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period. Use the last values sent from BAS	Remote
6A0	Comm Loss: Op Sta- tus Programmable Relays	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Com- pressor % RLA Out- put	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Cond Rfgt Pressure Output	Info	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Cond Head Press Cntrl Output	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: AFD speed signal output	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: AFD output power input	Immediate	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: External Hot Water Command	Info	WarningReset	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	High Motor Winding Temp	Immediate	Latch	Any of the compressor's motor winding temperature sensors is seen to be beyond the windings rated temperature of 260°F (126.7°C).	Local
6B6	Motor Winding Temp Sensor	Info or None	Latch	Both of the motor winding temperature sensors are seen to be out of their normal range. (Severity is adjustable via TU Service Tool – default is Info).	Local
6B6	Excessive Condenser Pressure	Immediate	Latch	The condenser pressure transducer of this chiller has detected a pressure in excess of the safe high side pressure as limited by the particular compressor type or the evaporator distributor present on this particular chiller.	Remote
6B6	Comm Loss: Winding Temp 1	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Winding Temp 2	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Oil Re- turn Purge Valve	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Hot Gas Bypass Valve	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	Comm Loss: Liquid Line Bypass Valve	Normal	Latch	Continual loss of communication between the MP and the Func- tional ID has occurred for a 30 second period.	Remote
6B6	AFD Bus Over Volt- age	Immediate Shutdown	Non-latching	Bus overvoltage indicated the high bus voltage cut out has been exceeded while the AFD is in a non-stopped mode.	Local

Hex Code	Diagnostic Name and Source	Severity	Persistence	Criteria	Reset Level
6B6	AFD Bus Under Volt- age	Immediate Shutdown	Non-latching	The bus voltage dropped below the Low Bus Cutout threshold and there is not enough voltage to safely operate the load.	Local
6B6	AFD Comm Loss: Main Processor	Immediate Shutdown	Latching	The AFD detected a continual loss of communication with the main processor for greater than the Communications Loss Time (bound setpoint).	
6B6	AFD Emergency Stop Fault	Immediate Shutdown	Latching	The emergency stop input was activated.	Local
6B6	AFD General Failure	Immediate Shutdown	Latching	Drive fault not listed in these diagnostic bytes. Catch all.	
6B6	AFD Ground Fault	Immediate Shutdown	Latching	Measured ground current exceeds ground current sensitivity.	Local
6B6	AFD Instantaneous Current Overload	Immediate Shutdown	Latching	Instantaneous current exceeded drive capacity.	
6B6	AFD Inverter Heat- sink Over Temp	Immediate Shutdown	Non-latching	The IGBT heat sink temperature exceeded the cut out tempera- ture.	Local
6B6	AFD Motor Current Overload	Immediate Shutdown	Latching	Motor Overload Curve Exceeded.	Local
6B6	AFD Output Phase Loss	Immediate Shutdown	Latching	Drive sensed an output phase is missing. Output phase loss is defined as greater than 15% output current imbalance for more than 5.0 seconds.	Local
6B6	Comm Loss: Adap- tive Frequency Drive	Normal Shut- down	Non-Latching	Continual loss of communication between the MP and the Func- tional ID has occurred for a 6-10 second period.	Local
6B6	AFD High Pressure Cutout	Immediate Shutdown	Latching	The high pressure hardware switch was tripped.	Local
6B6	AFD Rated Current out of Rang	Warning	Latching	The configuration motor rated current bigger than AFD rated cur- rent.	Local
6B6	AFD Interrupt Failure	Immediate Shutdown	Latching	AFD is reporting that it is still running the compressor when the MP has commanded the drive/compressor to be Off. Detection time about 8 sec. On detection and until the controller is manually reset, this diagnostic shall be active, the Evap Pump Output will be energized, the Cond Pump Output will be energized, the effected compressor will be continually commanded off, and be unloaded.	Local

Wiring Schematics

Typical field connection diagrams, electrical schematics and connections diagramsfor the AdaptiR[™] with AFD units are shown in this section.

Note: The drawings in this section are provided for reference only. These diagrams may not reflect the actual wiring of your unit. For specific electrical connection and schematic information, always refer to the wiring diagrams that were shipped with the unit.

Unit Electrical Data

To determine the specific electrical characteristics of a particular chiller, refer to the nameplates mounted on the units.

Drawing	Description	IOM Page
2311-3279	RTHD VFD STANDARD AFD Field Wiring	136
2311-3278	RTHD VFD STANDARD AFD Field Layout	138
2311-3277	RTHD VFD STANDARD AFD Component Location	140

	SECTION	CHILED WATER SUPPLY
2	3	
		RTHD-SVX04K-EN

2 REQUIRED DEVICE AND/OR CIRCUITRY BY OTHERS. 3 REQUIRED DEVICE AVAILABLE FROM TRANE. FIELD INSTALLED OPENING THE EXTERNAL AUTO-STOP CONTACT WILL INITATE A SHUT DOWN SEQUENCE OF THE CHILLER. CLOSURE OF THE CONTACT WILL ALLOW THE CHILLER TO RETURN TO NORMAL AUTOMATIC OPERATION.

AN OPENING OF THE EMERGENCY STOP CONTACT WILL SHUT THE CHILLER DOWN IMMEDIATELY AND TRIGGER AN EMERGENCY STOP INPUT DIAGNOSTIC. CLOSURE OF THE CONTACT AND A MANUAL RESET OF THE UNIT CONTROL DIAGNOSTIC WILL ALLOW THE CHILLER TO RETURN TO NORMAL OPERATION.

- DASHED LINES INDICATE FIELD WIRING BY OTHERS. PHANTOM LINES INDICATE ALTERNATE CIRCUITRY OR AVAILABLE SALES OPTIONS. CHECK SALES ORDERTO DETERMINE IF WIRING IS REQUIRED FOR SPECIFIC OPTIONS.

1

5

NOTES

2

DO NOT RUN LOW VOLTAGE CONTROL WIRING (30 VOLTS OR LESS) IN IN CONDUIT WITH 110 VOLT OR HIGHER WIRING, DO NOT EXCEED THE POLLOWING MAXIMUM RUN LENGTHS FOR A GIVEN SIZE: 14 AWG, 50 FT, 16 AWG, 2000 FT, 16 AWG, 1000FT

21

3

FIELD SELECTABLE AS: CONDENSER PRESSURE, DELTA PRESSURE OR CONTROL OUTPUT SIGNAL FOR CONDENSER HEAD PRESSURE CONTROL.

THE CONTACTS FOR THESE FEATURES ARE JUMPERED AT THE FACTORY BY JUMPERS VIA VAU TO ENABLE UNIT OPERATION. IN FRAVOTE CONTROL IS DESIRED REMOVE THE NOTED JUMPERS AND CONNECTTO THE DESIRED CONTROL CIRCUT.

FIELD PROVIDED 115 VOLT BOHZ OR 220 VOLT BOHZ CONTROL POWER SUPPLIES ARE REQUIRED. THE MAX FUES SIZE FOR ALL FIELD PROVIDED WIRING IS IS AMPS. GROUND ALL CUSTOMER PROVIDED ONE SUPPLIES AS REQUIRED BY CODE. GREEN GROUND SCREWS ARE PROVIDED IN UNIT CONTROL PANEL.

23 CLOSED CONTACT COMMANDS BASE LOADING OPERATION.

4

- THE FIELD PROVIDED INDICATORS MAY BE RELAYS, LIGHTS OR AUDIBLE DEVICES. EACH FUNCTION IS ASSOCIATED WITH A SPOT RELAY. THE INDICATORS MAY BE CONNECTOTO ETHER OR SOTH OF THE NORMALLY OPEN OR NORMALLY CLOSED RELAY CONTACTS OF EACH OF THE 4 SPOT RELAYS ON THE OPTIONAL UNIT OPERATING STATUS MODULE. THE FUNCTIONS OF THE OPERATING STATUS MODULE RELAYS ARE PROGRAMABLE. SEE OM FOR DEVILSE SHOWN.
 - THE NORMALLY OPEN CONTACTS ON EACH RELAY OPERATE AS FOLLOWS:

5

6

14

14 29 21

- ALARM RELAY THE NO CONTACTS CLOSE WHENTHERE IS AN DIAGNOSTIC THAT HAS CAUSED A CHILLER SHUTDOWN WITH EITHER A MANUAL RESET REQUIRED OR AN AUTOMATIC RESET POTENTIAL.

修改说明 ENGINEER CHANGE

1

5	6	7	8	9	10

Trane - by Trane Technologies (NYSE: TT), a global climate innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.